Thixotropy, antithixotropy, and viscoelasticity are three types of time-dependent dynamics that involve fundamentally different underlying physical processes. Here, we show that the three dynamics exhibit different signatures in hysteresis by examining the fingerprints of the simplest thixotropic kinetic model, a new antithixotropic model that we introduce here, and the Giesekus model. We start by showing that a consistent protocol to generate hysteresis loops is a discrete shear-rate controlled ramp that begins and ends at high shear rates, rather than at low shear rates. Using this protocol, we identify two distinguishing features in the resulting stress versus shear rate loops. The first is the direction of the hysteresis loops: clockwise for thixotropy, but counterclockwise for viscoelasticity and antithixotropy. A second feature is achieved at high ramping rates where all responses lose hysteresis: the viscoelastic response shows a stress plateau at low shear rates due to lack of stress relaxation, whereas the thixotropic and antithixotropic responses are purely viscous with minimal shear thinning or thickening. We establish further evidence for these signatures by experimentally measuring the hysteresis of Laponite suspensions, carbon black suspensions, and poly(ethylene oxide) solutions, each representing a historically accepted example of each class of material behavior. The signatures measured in experiments are consistent with those predicted by the three models. This study reveals different fingerprints in hysteresis loops associated with thixotropy, antithixotropy, and viscoelasticity, which may be helpful in distinguishing the three time-dependent responses.

1.
da Silva Leite Coelho
,
P. H.
,
V. A.
de Deus Armellini
, and
A. R.
Morales
, “
Assessment of percolation threshold simulation for individual and hybrid nanocomposites of carbon nanotubes and carbon black
,”
Mater. Res.
20
(
6
),
1638
1649
(
2017
).
2.
Richards
,
J. J.
,
J. B.
Hipp
,
J. K.
Riley
,
N. J.
Wagner
, and
P. D.
Butler
, “
Clustering and percolation in suspensions of carbon black
,”
Langmuir
33
(
43
),
12260
12266
(
2017
).
3.
Trappe
,
V.
, and
D. A.
Weitz
, “
Scaling of the viscoelasticity of weakly attractive particles
,”
Phys. Rev. Lett.
85
(
2
),
449
452
(
2000
).
4.
Trappe
,
V.
,
V.
Prasad
,
L.
Cipelletti
,
P. N.
Segre
, and
D. A.
Weitz
, “
Jamming phase diagram for attractive particles
,”
Nature
411
(
6839
),
772
775
(
2001
).
5.
International Carbon Black Association. “Carbon black user's guide,” https://www.carbon-black.org/ (2016).
6.
Hipp
,
J. B.
,
J. J.
Richards
, and
N. J.
Wagner
, “
Structure-property relationships of sheared carbon black suspensions determined by simultaneous rheological and neutron scattering measurements
,”
J. Rheol.
63
(
3
),
423
436
(
2019
).
7.
Hipp
,
J. B.
,
J. J.
Richards
, and
N. J.
Wagner
, “
Direct measurements of the microstructural origin of shear-thinning in carbon black suspensions
,”
J. Rheol.
65
(
2
),
145
157
(
2021
).
8.
Ovarlez
,
G.
,
L.
Tocquer
,
F.
Bertrand
, and
P.
Coussot
, “
Rheopexy and tunable yield stress of carbon black suspensions
,”
Soft Matter
9
(
23
),
5540
5549
(
2013
).
9.
Wang
,
Y.
, and
R. H.
Ewoldt
, “
New insights on carbon black suspension rheology—Anisotropic thixotropy and anti-thixotropy
,”
J. Rheol.
66
(
5
),
937
953
(
2022
).
10.
Narayanan
,
A.
,
F.
Mugele
, and
M. H. G.
Duits
, “
Mechanical history dependence in carbon black suspensions for flow batteries: A rheo-impedance study
,”
Langmuir
33
,
1629
1638
(
2017
).
11.
Nelson
,
A. Z.
, and
R. H.
Ewoldt
, “
Design of yield-stress fluids: A rheology-to-structure inverse problem
,”
Soft Matter
13
,
7578
7594
(
2017
).
12.
Ewoldt
,
R. H.
, and
C.
Saengow
, “
Designing complex fluids
,”
Annu. Rev. Fluid Mech.
54
,
413
441
(
2022
).
13.
Wang
,
Q.
,
L.
Wang
,
M. S.
Detamore
, and
C.
Berkland
, “
Biodegradable colloidal gels as moldable tissue engineering scaffolds
,”
Adv. Mater.
20
,
236
239
(
2008
).
14.
Corker
,
A.
,
H. C. H.
Ng
,
R. J.
Poole
, and
E.
García-Tuñón
, “
3D printing with 2D colloids: Designing rheology protocols to predict ‘printability’ of soft-materials
,”
Soft Matter
15
,
1444
1456
(
2019
).
15.
Smay
,
J. E.
,
G. M.
Gratson
,
R. F.
Shepherd
,
J.
Cesarano III
, and
J. A.
Lewis
, “
Directed colloidal assembly of 3D periodic structures
,”
Adv. Mater.
14
,
1279
1283
(
2002
).
16.
Youssry
,
M.
,
L.
Madec
,
P.
Soudan
,
M.
Cerbelaud
,
D.
Guyomard
, and
B.
Lestriez
, “
Non-aqueous carbon black suspensions for lithium-based redox flow batteries: Rheology and simultaneous rheo-electrical behavior
,”
Phys. Chem. Chem. Phys.
15
(
34
),
14476
14486
(
2013
).
17.
Duduta
,
M.
,
B.
Ho
,
V. C.
Wood
,
P.
Limthongkul
,
V. E.
Brunini
,
W. C.
Carter
, and
Y.-M.
Chiang
, “
Semi-solid lithium rechargeable flow battery
,”
Adv. Energy Mater.
1
(
4
),
511
516
(
2011
).
18.
Fan
,
F. Y.
,
W. H.
Woodford
,
Z.
Li
,
N.
Baram
,
K. C.
Smith
,
A.
Helal
,
G. H.
McKinley
,
W. C.
Carter
, and
Y.-M.
Chiang
, “
Polysulfide flow batteries enabled by percolating nanoscale conductor networks
,”
Nano Lett.
14
(
4
),
2210
2218
(
2014
).
19.
Wei
,
T.-S.
,
F. Y.
Fan
,
A.
Helal
,
K. C.
Smith
,
G. H.
McKinley
,
Y.-M.
Chiang
, and
J. A.
Lewis
, “
Biphasic electrode suspensions for Li-ion semi-solid flow cells with high energy density, fast charge transport, and low-dissipation flow
,”
Adv. Energy Mater.
5
(
15
),
1500535
(
2015
).
20.
Sen
,
S.
,
A. G.
Morales
, and
R. H.
Ewoldt
, “
Thixotropy in viscoplastic drop impact on thin films
,”
Phys. Rev. Fluids
6
,
043301
(
2021
).
21.
Larson
,
R. G.
, “
Constitutive equations for thixotropic fluids
,”
J. Rheol.
59
(
3
),
595
611
(
2015
).
22.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics
,
2nd ed.
(
Wiley
,
New York
,
1987
).
23.
Bauer
,
W. H.
, and
E. A.
Collins
, Chapter 8—Thixotropy and Dilatancy, in
Rheology
(
Academic Press
,
New York
,
1967
).
24.
Barnes
,
H. A.
, “
Thixotropy: A review
,”
J. Non-Newton. Fluid Mech.
70
,
1
33
(
1997
).
25.
IUPAC
,
Compendium of Chemical Terminology: The Gold Book
,
2nd ed.
(
Blackwell Science
,
Oxford
,
1997
).
26.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147–148
,
214
227
(
2009
).
27.
Larson
,
R. G.
, and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
,
477
501
(
2019
).
28.
Yearsley
,
K. M.
,
M. R.
Mackley
,
F.
Chinesta
, and
A.
Leygue
, “
The rheology of multiwalled carbon nanotube and carbon black suspensions
,”
J. Rheol.
56
(
6
),
1465
1490
(
2012
).
29.
Horner
,
J. S.
,
M. J.
Armstrong
,
N. J.
Wagner
, and
A. N.
Beris
, “
Measurements of human blood viscoelasticity and thixotropy under steady and transient shear and constitutive modeling thereof
,”
J. Rheol.
63
,
799
813
(
2019
).
30.
Ran
,
R.
,
S.
Pradeep
,
S. K.
Acharige
,
B. C.
Blackwell
,
C.
Kammer
,
D. J.
Jerolmack
, and
P. E.
Arratia
, “
Understanding the rheology of kaolinite clay suspensions using Bayesian inference
,”
J. Rheol.
67
,
241
252
(
2023
).
31.
Dullaert
,
K.
, and
J.
Mewis
, “
A model system for thixotropy studies
,”
Rheol. Acta
45
,
23
32
(
2005
).
32.
Dullaert
,
K.
, and
J.
Mewis
, “
Stress jumps on weakly flocculated dispersions: Steady state and transient results
,”
J. Colloid Interface Sci.
287
(
2
),
542
551
(
2005
).
33.
Dullaert
,
K.
, and
J.
Mewis
, “
Thixotropy: Build-up and breakdown curves during flow
,”
J. Rheol.
49
,
1213
1230
(
2005
).
34.
Dullaert
,
K.
, and
J.
Mewis
, “
A structural kinetics model for thixotropy
,”
J. Non-Newton. Fluid Mech.
139
,
21
30
(
2006
).
35.
Chang
,
C.
,
Q. D.
Nguyen
, and
H. P.
Rønningsen
, “
Isothermal start-up of pipeline transporting waxy crude oil
,”
J. Non-Newton. Fluid Mech.
87
,
127
154
(
1999
).
36.
Toorman
,
E. A.
, “
Modelling the thixotropic behaviour of dense cohesive sediment suspensions
,”
Rheol. Acta
36
,
56
65
(
1997
).
37.
Sen
,
S.
, and
R. H.
Ewoldt
, “
Thixotropic spectra and Ashby-style charts for thixotropy
,”
J. Rheol.
66
(
5
),
1041
1053
(
2022
).
38.
Sudreau
,
I.
,
M.
Auxois
,
M.
Servel
,
S.
Manneville
, and
T.
Divoux
, “
Residual stresses and shear-induced overaging in boehmite gels
,”
Phys. Rev. Mater.
6
,
L042601
(
2022
).
39.
Agarwal
,
M.
,
M.
Kaushal
, and
Y. M.
Joshi
, “
Signatures of overaging in an aqueous dispersion of carbopol
,”
Langmuir
36
,
14849
14863
(
2020
).
40.
Viasnoff
,
V.
, and
F.
Lequeux
, “
Rejuvenation and overaging in a colloidal glass under shear
,”
Phys. Rev. Lett.
89
(
6
),
065701
(
2002
).
41.
Keller
,
D. S.
, and
D. V.
Keller
, “
The effect of particle size distribution on the antithixotropic and shear thickening properties of coal–water dispersions
,”
J. Rheol.
35
,
1583
1607
(
1991
).
42.
Chang
,
C.
,
P. A.
Smith
,
C.
Chang
, and
P. A.
Smith
, “
Flow-induced structure in a system of nuclear waste simulant slurries
,”
Rheol. Acta
35
,
382
389
(
1996
).
43.
Vermant
,
J.
, and
M. J.
Solomon
, “
Flow-induced structure in colloidal suspensions
,”
J. Phys.: Condens. Matter
17
(
4
),
R187
R216
(
2005
).
44.
Hoekstra
,
H.
,
J.
Vermant
,
J.
Mewis
, and
G. G.
Fuller
, “
Flow-induced anisotropy and reversible aggregation in two-dimensional suspensions
,”
Langmuir
19
,
9134
9141
(
2003
).
45.
Varadan
,
P.
, and
M. J.
Solomon
, “
Shear-induced microstructural evolution of thermoreversible colloidal gel
,”
Langmuir
17
,
2918
2929
(
2001
).
46.
Macosko
,
C. W.
,
Rheology: Principles, Measurements, and Applications
(
VCH Publishers. Inc.
,
New York
,
1994
).
47.
Divoux
,
T.
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
,
1
5
(
2013
).
48.
Sharma
,
S.
,
V.
Shankar
, and
Y. M.
Joshi
, “
Viscoelasticity and rheological hysteresis
,”
J. Rheol.
67
,
139
155
(
2023
).
49.
Wang
,
Y.
,
X.
Li
,
X.
Zhu
, and
S.
Wang
, “
Characterizing state of chain entanglement in entangled polymer solutions during and after large shear deformation
,”
Macromolecules
45
(
5
),
2514
2521
(
2012
).
50.
Saengow
,
C.
,
A. J.
Giacomin
,
N.
Grizzuti
, and
R.
Pasquino
, “
Startup steady shear flow from the Oldroyd 8-constant framework
,”
Phys. Fluids
31
,
063101
(
2019
).
51.
Agarwal
,
M.
,
S.
Sharma
,
V.
Shankar
, and
Y. M.
Joshi
, “
Distinguishing thixotropy from viscoelasticity
,”
J. Rheol.
65
,
663
680
(
2021
).
52.
Green
,
H.
, and
R. N.
Weltmann
, “
Analysis of thixotropy of pigment-vehicle suspensions—Basic principles of the hysteresis loop
,”
Ind. Eng. Chem. Anal. Ed.
15
,
201
206
(
1943
).
53.
Green
,
H.
, and
R. N.
Weltmann
, “
The effect of thixotropy on plasticity measurements
,”
J. Appl. Phys.
15
,
414
420
(
1944
).
54.
Negi
,
A. S.
, and
C. O.
Osuji
, “
New insights on fumed colloidal rheology—Shear thickening and vorticity-aligned structures in flocculating dispersions
,”
Rheol. Acta
48
,
871
881
(
2009
).
55.
N’gouamba
,
E.
,
M.
Essadik
,
J.
Goyon
,
T.
Oerther
, and
P.
Coussot
, “
Yielding and rheopexy of aqueous xanthan gum solutions
,”
Rheol. Acta
60
(
11
),
653
660
(
2021
).
56.
Bird
,
R. B.
, and
B. D.
Marsh
, “
Viscoelastic hysteresis. Part I. Model predictions
,”
J. Rheol.
12
,
479
488
(
1968
).
57.
Marsh
,
B. D.
, “
Viscoelastic hysteresis. Part II. Numerical and experimental examples
,”
J. Rheol.
12
,
489
510
(
1968
).
58.
Rubio-Hernández
,
F. J.
, and
A. I.
Gómez-Merino
, “
Time dependent mechanical behavior: The viscoelastic loop
,”
Mech. Time-Depend. Mater.
12
,
357
364
(
2008
).
59.
Jamali
,
S.
, and
G. H.
McKinley
, “
The Mnemosyne number and the rheology of remembrance
,”
J. Rheol.
66
(
5
),
1027
1039
(
2022
).
60.
See the supplementary material for the protorheology estimate of the yield stress of Laponite and CB suspensions and the relaxation time of the PEO solution, and other hysteresis protocols and results. All the data shown in the Experimental Results section are available within the supplementary material.
61.
MATLAB. R2021a (9.10.0.1602886). The MathWorks, Inc., 2021.
62.
Xu
,
M.
,
S.
Roig-Sanchez
,
A.
Riseman
, and
J. M.
Frostad
, “
Influence of pH, salt ions, and binary mixtures of different molecular weights on the extensional rheology of polyethylene oxide
,”
J. Rheol.
66
(
5
),
881
893
(
2022
).
63.
Odell
,
J. A.
,
A.
Keller
, and
Y.
Rabin
, “
Flow-induced scission of isolated macromolecules
,”
J. Chem. Phys.
88
(
6
),
4022
4028
(
1988
).
64.
Odell
,
J. A.
,
A. J.
Muller
,
K. A.
Narh
, and
A.
Keller
, “
Degradation of polymer solutions in extensional flows
,”
Macromolecules
23
(
12
),
3092
3103
(
1990
).
65.
Goodeve
,
C. F.
, and
G. W.
Whitfield
, “
The measurement of thixotropy in absolute units
,”
Trans. Faraday Soc.
34
,
511
520
(
1938
).
66.
Moore
,
F.
, “
The rheology of ceramic slips and bodies
,”
Trans. Br. Ceram. Soc.
58
,
470
494
(
1959
).
67.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
Quantitative nonlinear thixotropic model with stretched exponential response in transient shear flows
,”
J. Rheol.
60
,
1301
1315
(
2016
).
68.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
A multimode structural kinetics constitutive equation for the transient rheology of thixotropic elasto-viscoplastic fluids
,”
J. Rheol.
62
,
321
342
(
2018
).
69.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
Time-dependent shear rate inhomogeneities and shear bands in a thixotropic yield-stress fluid under transient shear
,”
Soft Matter
15
,
7956
7967
(
2019
).
70.
Blackwell
,
B. C.
, and
R. H.
Ewoldt
, “
A simple thixotropic-viscoelastic constitutive model produces unique signatures in large-amplitude oscillatory shear (LAOS)
,”
J. Non-Newton. Fluid Mech.
208–209
,
27
41
(
2014
).
71.
Varchanis
,
S.
,
G.
Makrigiorgos
,
P.
Moschopoulos
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Modeling the rheology of thixotropic elasto-visco-plastic materials
,”
J. Rheol.
63
,
609
639
(
2019
).
72.
Ewoldt
,
R. H.
, and
G. H.
McKinley
, “
Mapping thixo-elasto-visco-plastic behavior
,”
Rheol. Acta
56
,
195
210
(
2017
).
73.
Dealy
,
J. M.
, “
Weissenberg and Deborah numbers—Their definition and use
,”
Rheol. Bull.
79
(
2
),
14
18
(
2010
).
74.
Buitenhuis
,
J.
, and
M.
Pönitsch
, “
Negative thixotropy of polymer solutions. I. A model explaining time-dependent viscosity
,”
Colloid Polym. Sci.
281
(
3
),
253
259
(
2003
).
75.
Buckingham
,
E.
, “
On physically similar systems: Illustrations of the use of dimensional equations
,”
Phys. Rev.
4
(
4
),
345
376
(
1914
).
76.
Radhakrishnan
,
R.
,
T.
Divoux
,
S.
Manneville
, and
S. M.
Fielding
, “
Understanding rheological hysteresis in soft glassy materials
,”
Soft Matter
13
,
1834
1852
(
2017
).
77.
Acierno
,
D.
,
F. P.
La Mantia
,
G.
Marrucci
, and
G.
Titomanlio
, “
A non-linear viscoelastic model with structure-dependent relaxation times. I. Basic formulation
,”
J. Non-Newton. Fluid Mech.
1
(
2
),
125
146
(
1976
).
78.
Jamali
,
S.
,
R. C.
Armstrong
, and
G. H.
McKinley
, “
Multiscale nature of thixotropy and rheological hysteresis in attractive colloidal suspensions under shear
,”
Phys. Rev. Lett.
123
,
248003
(
2019
).
79.
Puisto
,
A.
,
M.
Mohtaschemi
,
M. J.
Alava
, and
X.
Illa
, “
Dynamic hysteresis in the rheology of complex fluids
,”
Phys. Rev. E
91
,
042314
(
2015
).
80.
Bonn
,
D.
,
H.
Kellay
,
H.
Tanaka
,
G.
Wegdam
, and
J.
Meunier
, “
Laponite: What is the difference between a gel and a glass?
,”
Langmuir
15
(
22
),
7534
7536
(
1999
).
81.
Cummins
,
H. Z.
, “
Liquid, glass, gel: The phases of colloidal laponite
,”
J. Non-Cryst. Solids
353
(
41–43
),
3891
3905
(
2007
).
82.
Tanaka
,
H.
,
J.
Meunier
, and
D.
Bonn
, “
Nonergodic states of charged colloidal suspensions: Repulsive and attractive glasses and gels
,”
Phys. Rev. E
69
,
031304
(
2004
).
83.
Hossain
,
T.
, and
R. H.
Ewoldt
, “Protorheology,” J. Rheol. (unpublished).
84.
Hossain
,
T.
, and
R. H.
Ewoldt
, “
Do-it-yourself rheometry
,”
Phys. Fluids
34
(
5
),
053105
(
2022
).
85.
Ebagninin
,
K. W.
,
A.
Benchabane
, and
K.
Bekkour
, “
Rheological characterization of poly(ethylene oxide) solutions of different molecular weights
,”
J. Colloid Interface Sci.
336
(
1
),
360
367
(
2009
).
86.
Yu
,
D. M.
,
G. L.
Amidon
,
N. D.
Weiner
, and
A. H.
Goldberg
, “
Viscoelastic properties of poly(ethylene oxide) solution
,”
J. Pharm. Sci.
83
(
10
),
1443
1449
(
1994
).
87.
Bailey
,
F. E.
, and
J. V.
Koleske
,
Solution Properties of Poly(ethylene Oxide), in Poly (Ethylene Oxide)
(
Academic
,
New York
,
1976
).
88.
Grädel
,
M.
,
J. D.
Rathinaraj
,
R.
More
,
G.
Pagani
,
J.
Vermant
, and
G. H.
McKinley
, “Distinguishing thixotropy from viscoelasticity in complex fluids using gaborheometry and parallel superposition rheometry,” presented at the Institute of Non-Newtonian Fluid Mechanics–The British Society of Rheology Meeting, Lake Vyrnwy, Wales, 3–5 April 2023.
89.
Vermant
,
J.
,
L.
Walker
,
P.
Moldenaers
, and
J.
Mewis
, “
Orthogonal versus parallel superposition measurements
,”
J. Non-Newton. Fluid Mech.
79
(
2-3
),
173
189
(
1998
).
90.
Kim
,
S.
,
J.
Mewis
,
C.
Clasen
, and
J.
Vermant
, “
Superposition rheometry of a wormlike micellar fluid
,”
Rheol. Acta
52
,
727
740
(
2013
).
91.
Zhang
,
J.
,
A.
Jurzyk
,
M. E.
Helgeson
, and
L. G.
Leal
, “
Modeling orthogonal superposition rheometry to probe nonequilibrium dynamics of entangled polymers
,”
J. Rheol.
65
,
983
998
(
2021
).
92.
Lin
,
N. Y. C.
,
C.
Ness
,
M. E.
Cates
,
J.
Sun
, and
I.
Cohen
, “
Tunable shear thickening in suspensions
,”
Proc. Natl. Acad. Sci. U.S.A.
113
(
39
),
10774
10778
(
2016
).
93.
Ewoldt
,
R. H.
,
M. T.
Johnston
, and
L. M.
Caretta
, “Experimental challenges of shear rheology: How to avoid bad data,” in Complex Fluids in Biological Systems, Springer Biological Engineering Series (Springer, New York, 2015).

Supplementary Material

You do not currently have access to this content.