In this study, the interfacial flow dynamics involving a chemical reaction that produces viscoelastic material at the interface between two liquids is experimentally investigated, and the material is evaluated using interfacial large amplitude oscillatory shear (LAOS) measurements. The flow dynamics indicates fingering patterns at low injection flow rates and fracturing patterns at high flow rates in Hele-Shaw cells, where a more viscous xanthan gum solution is displaced by the less viscous Fe(NO3)3 solution with various concentrations of Fe(NO3)3. The threshold flow rate value of such a transition is different for various concentrations of Fe(NO3)3. Although such a transition without chemical reactions has been discussed, the factors responsible for the transition remain unclear. The flow dynamics in Hele-Shaw cells is considered to flow under large deformation, which exceeds the small amplitude oscillatory shear condition but is under the LAOS condition. Therefore, LAOS measurement of the viscoelastic interface is performed for various concentrations of Fe(NO3)3. Using the characteristic properties extracted from the LAOS measurements, the elastic and viscous forces of the viscoelastic interface are evaluated. We show the transition from fingering to fracturing patterns when the elastic force exceeds a certain value. These findings highlight that rheology under large deformation of the viscoelastic interface plays a crucial role in interfacial flow, where viscoelastic materials are produced by chemical reactions at the interface. In addition, this study should be an example of the successful elucidation of physical phenomena by interfacial LAOS, which has been reported in a very limited number of studies.

1.
Saffman
,
P. G.
, and
G.
Taylor
, “
The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid
,”
Proc. R. Soc. A
245
,
312
329
(
1958
).
2.
Homsy
,
G. M.
, “
Viscous fingering in porous media
,”
Annu. Rev. Fluid Mech.
19
,
271
311
(
1987
).
3.
McCloud
,
K. V.
, and
J. V.
Maher
, “
Experimental perturbations to Saffman-Taylor flow
,”
Phys. Rep.
260
,
139
185
(
1995
).
4.
Nittmann
,
J.
,
G.
Daccord
, and
H. E.
Stanley
, “
Fractal growth of viscous fingers: Quantitative characterization of a fluid instability phenomenon
,”
Nature
314
,
141
144
(
1985
).
5.
Van Damme
,
H.
,
F.
Obrecht
,
P.
Levitz
,
L.
Gatineau
, and
C.
Laroche
, “
Fractal viscous fingering in clay slurries
,”
Nature
324
,
731
733
(
1986
).
6.
Lemaire
,
E.
,
P.
Levitz
,
G.
Daccord
, and
H.
Van Damme
, “
From viscous fingering to viscoelastic fracturing in colloidal fluids
,”
Phys. Rev. Lett.
67
,
2009
2012
(
1991
).
7.
Zhao
,
H.
and
Maher
,
J. V
., “
Associating-polymer effects in a Hele-Shaw experiment
,”
Phys. Rev. E
47
,
4278
4283
(
1993
).
8.
Nasr-El-Din
,
H. A.
,
K. C.
Khulbe
,
V.
Hornof
, and
G. H.
Neale
, “
Effects of interfacial reaction on the radial displacement of oil by alkaline solutions
,”
Rev. Inst. Fr. Pét.
45
,
231
244
(
1990
).
9.
Hornof
,
V.
, and
F. U.
Baig
, “
Influence of interfacial reaction and mobility ratio on the displacement of oil in a Hele-Shaw cell
,”
Exp. Fluids
18
,
448
453
(
1995
).
10.
Pojman
,
J. A.
,
G.
Gunn
,
C.
Patterson
,
J.
Owens
, and
C.
Simmons
, “
Frontal dispersion polymerization
,”
J. Phys. Chem. B
102
,
3927
3929
(
1998
).
11.
Bhaskar
,
K. R.
,
P.
Garik
,
B. S.
Turner
,
J. D.
Bradley
,
R.
Bansil
,
H. E.
Stanley
, and
J. T.
LaMont
, “
Viscous fingering of HCl through gastric mucin
,”
Nature
360
,
458
461
(
1992
).
12.
Fernandez
,
J.
, and
G. M.
Homsy
, “
Viscous fingering with chemical reaction: Effect of in-situ production of surfactants
,”
J. Fluid Mech.
480
,
267
281
(
2003
).
13.
Tsuzuki
,
R.
,
T.
Ban
,
M.
Fujimura
, and
Y.
Nagatsu
, “
Dual role of surfactant-producing reaction in immiscible viscous fingering evolution
,”
Phys. Fluids
31
,
022102
(
2019
).
14.
Tsuzuki
,
R.
,
Q.
Li
,
Y.
Nagatsu
, and
C. Y.
Chen
, “
Numerical study of immiscible viscous fingering in chemically reactive Hele-Shaw flows: Production of surfactants
,”
Phys. Rev. Fluids
4
,
104003
(
2019
).
15.
De Wit
,
A.
, “
Chemo-hydrodynamic patterns and instabilities
,”
Annu. Rev. Fluid Mech.
52
,
531
555
(
2020
).
16.
Nagatsu
,
Y.
,
K.
Matsuda
,
Y.
Kato
, and
Y.
Tada
, “
Experimental study on miscible viscous fingering involving viscosity changes induced by variations in chemical species concentrations due to chemical reactions
,”
J. Fluid Mech.
571
,
475
493
(
2007
).
17.
Nagatsu
,
Y.
,
C.
Iguchi
,
K.
Matsuda
,
Y.
Kato
, and
Y.
Tada
, “
Miscible viscous fingering involving viscosity changes of the displacing fluid by chemical reactions
,”
Phys. Fluids
22
,
024101
(
2010
).
18.
Nagatsu
,
Y.
, and
A.
De Wit
, “
Viscous fingering of a miscible reactive A + B → C interface for an infinitely fast chemical reaction: Nonlinear simulations
,”
Phys. Fluids
23
,
043103
(
2011
).
19.
Omori
,
K.
, and
Y.
Nagatsu
, “
Numerical simulations of miscible viscous fingering involving viscosity changes of the displacing fluid by A + B → C chemical reactions
,”
AIP Adv.
10
,
095014
(
2020
).
20.
Nagatsu
,
Y.
,
A.
Hayashi
,
M.
Ban
,
Y.
Kato
, and
Y.
Tada
, “
Spiral pattern in a radial displacement involving a reaction-producing gel
,”
Phys. Rev. E
78
,
026307
(
2008
).
21.
Niroobakhsh
,
Z.
,
M.
Litman
, and
A.
Belmonte
, “
Flow instabilities due to the interfacial formation of surfactant-fatty acid material in a Hele-Shaw cell
,”
Phys. Rev. E
96
,
053102
(
2017
).
22.
Hirano
,
S.
,
Y.
Nagatsu
, and
R. X.
Suzuki
, “
Reversal of effects from gel production in a reacting flow dependent on gel strength
,”
Phys. Rev. Fluids
7
,
023201
(
2022
).
23.
Hozumi
,
T.
,
S.
Ohta
, and
T.
Ito
, “
Analysis of the calcium alginate gelation process using a kenics static mixer
,”
Ind. Eng. Chem. Res.
54
,
2099
2107
(
2015
).
24.
Amici
,
E.
,
G.
Tetradis-Meris
,
C. P.
de Torres
, and
F.
Jousse
, “
Alginate gelation in microfluidic channels
,”
Food Hydrocoll.
22
,
97
104
(
2008
).
25.
Vossoughi
,
S.
, “
Profile modification using in situ gelation technology—A review
,”
J. Pet. Sci. Eng.
26
,
199
209
(
2000
).
26.
Podgorski
,
T.
,
M. C.
Sostarecz
,
S.
Zorman
, and
A.
Belmonte
, “
Fingering instabilities of a reactive micellar interface
,”
Phys. Rev. E
76
,
016202
(
2007
).
27.
Burghelea
,
T.
,
K.
Wielage-Burchard
,
I.
Frigaard
,
M. D.
Martinez
, and
J.
Feng
, “
A novel low inertia shear flow instability triggered by a chemical reaction
,”
Phys. Fluids
19
,
083102
(
2007
).
28.
Burghelea
,
T. I.
, and
I. A.
Frigaard
, “
Unstable parallel flows triggered by a fast chemical reaction
,”
J. Nonnewtonian Fluid Mech.
166
,
500
514
(
2011
).
29.
Yamaguchi
,
M.
,
R.
Hagiwara
,
T.
Yokomori
, and
T.
Ueda
, “
Experimental study on flow characteristics with gel reaction in a non–element mixer
,”
J. Chem. Eng. Jpn.
50
,
485
491
(
2017
).
30.
Niroobakhsh
,
Z.
, and
A.
Belmonte
, “
Dynamics of a reactive micellar oil-water interface in a flowing liquid column
,”
J. Non-Newtonian Fluid Mech.
261
,
111
122
(
2018
).
31.
Ewoldt
,
R. H.
,
Hosoi
,
A. E.
and
McKinley
,
G. H
., “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
1458
(
2008
).
32.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
33.
Fuller
,
G. G.
, and
J.
Vermant
, “
Complex fluid-fluid interfaces: Rheology and structure
,”
Annu. Rev. Chem. Biomol. Eng.
3
,
519
543
(
2012
).
34.
Jaensson
,
N.
, and
J.
Vermant
, “
Tensiometry and rheology of complex interfaces
,”
Curr. Opin. Colloid Interface Sci.
37
,
136
150
(
2018
).
35.
Tadjoa
,
O.
,
P.
Cassagnau
, and
J. P.
Chapel
, “
Two-dimensional sol-gel transition in silica alkoxides at the air/water interface
,”
Langmuir
25
,
11205
11209
(
2009
).
36.
Simon
,
S.
,
S.
Subramanian
,
B.
Gao
, and
J.
Sjöblom
, “
Interfacial shear rheology of gels formed at the oil/water interface by tetrameric acid and calcium ion: Influence of tetrameric acid structure and oil composition
,”
Ind. Eng. Chem. Res.
54
,
8713
8722
(
2015
).
37.
Leopércio
,
B. C.
,
P. R.
De Souza Mendes
, and
G. G.
Fuller
, “
Growth kinetics and mechanics of hydrate films by interfacial rheology
,”
Langmuir
32
,
4203
4209
(
2016
).
38.
Wu
,
C.
,
J. Y.
Lim
,
G. G.
Fuller
, and
L.
Cegelski
, “
Quantitative analysis of amyloid-integrated biofilms formed by uropathogenic Escherichia coli at the air-liquid interface
,”
Biophys. J.
103
,
464
471
(
2012
).
39.
Beltramo
,
P. J.
,
M.
Gupta
,
A.
Alicke
,
I.
Liascukiene
,
D. Z.
Gunes
,
C. N.
Baroud
, and
J.
Vermant
, “
Arresting dissolution by interfacial rheology design
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
10373
10378
(
2017
).
40.
Vishal
,
B.
, and
P.
Ghosh
, “
Nonlinear viscoelastic behavior of air-water interface containing surfactant-laden nanoparticles
,”
Nihon Reoroji Gakkaishi
48
,
15
25
(
2020
).
41.
Birbaum
,
F. C.
,
S.
Haavisto
,
A.
Koponen
,
E. J.
Windhab
, and
P.
Fischer
, “
Shear localisation in interfacial particle layers and its influence on Lissajous-plots
,”
Rheol. Acta
55
,
267
278
(
2016
).
42.
Sagis
,
L. M. C.
, and
P.
Fischer
, “
Nonlinear rheology of complex fluid-fluid interfaces
,”
Curr. Opin. Colloid Interface Sci.
19
,
520
529
(
2014
).
43.
Rühs
,
P. A.
,
Affolter
,
C.
,
Windhab
,
E. J.
, and
Fischer
,
P
., “
Shear and dilatational linear and nonlinear subphase controlled interfacial rheology of β-lactoglobulin fibrils and their derivatives
,”
J. Rheol.
57
,
1003
1022
(
2013
).
44.
Erni
,
P.
, and
A.
Parker
, “
Nonlinear viscoelasticity and shear localization at complex fluid interfaces
,”
Langmuir
28
,
7757
7767
(
2012
).
45.
Mora
,
S.
, and
M.
Manna
, “
Saffman-Taylor instability of viscoelastic fluids: From viscous fingering to elastic fractures
,”
Phys. Rev. E
81
,
026305
(
2010
).
46.
Ligoure
,
C.
, and
S.
Mora
, “
Fractures in complex fluids: The case of transient networks
,”
Rheol. Acta
52
,
91
114
(
2013
).
47.
Vlad
,
D. H.
, and
J. V.
Maher
, “
Tip-splitting instabilities in the channel Saffman-Taylor flow of constant viscosity elastic fluids
,”
Phys. Rev. E
61
,
5439
5444
(
2000
).
48.
Vandebril
,
S.
,
A.
Franck
,
G. G.
Fuller
,
P.
Moldenaers
, and
J.
Vermant
, “
A double wall-ring geometry for interfacial shear rheometry
,”
Rheol. Acta
49
,
131
144
(
2010
).
49.
Schroyen
,
B.
,
D. Z.
Gunes
, and
J.
Vermant
, “
A versatile subphase exchange cell for interfacial shear rheology
,”
Rheol. Acta
56
,
1
10
(
2017
).
50.
Almdal
,
K.
,
J.
Dyre
,
S.
Hvidt
, and
O.
Kramer
, “
Towards a phenomenological definition of the term ‘gel’
,”
Polym. Gels Networks
1
,
5
17
(
1993
).
51.
Barnes
,
H. A.
,
A Handbook of Elementary Rheology
(
University of Wales
, Aberystwyth,
2000
).
52.
Winter
,
H. H.
and
Chambon
,
F
., “
Analysis of linear viscoelasticity of a crosslinking polymer at the gel point
,”
J. Rheol.
30
,
367
382
(
1986
).
53.
Flügge
,
W.
,
Viscoelasticity
(
Springer
, New York,
1975
).
54.
Laun
,
H. M.
, “
Description of the non-linear shear behaviour of a low density polyethylene melt by means of an experimentally determined strain dependent memory function
,”
Rheol. Acta
17
,
1
15
(
1978
).
55.
Ravera
,
F.
,
G.
Loglio
, and
V. I.
Kovalchuk
, “
Interfacial dilational rheology by oscillating bubble/drop methods
,”
Curr. Opin. Colloid Interface Sci.
15
,
217
228
(
2010
).
56.
Kotula
,
A. P.
and
Anna
,
S. L
., “
Regular perturbation analysis of small amplitude oscillatory dilatation of an interface in a capillary pressure tensiometer
,”
J. Rheol.
59
,
85
117
(
2015
).
57.
See supplementary material online for (i) supporting movie, (ii) osmotic flux(velocity) versus flow flux by injection, (iii) dilatational properties, and (iv) a proper model for calculating the relaxation time.

Supplementary Material

You do not currently have access to this content.