Surfactants at gas-liquid and liquid-liquid interfaces have profound effects on interfacial stresses that strongly influence flow in bulk phases in contact with the interface. These effects include changes in interfacial tension and the development of extra stresses that arise when the interface is deformed. Surfactants are important in nature, biological function, and numerous technologies. Understanding interfacial rheology is critical to the development of improved surfactants for these important applications. Here, we propose a novel and noninvasive technique for the investigation of interfacial rheological behavior in shear deformations. In recent years, several techniques for such measurements have been developed and utilized to study a wide range of surfactant systems. However, existing techniques may inherently be invasive making it difficult to isolate the intrinsic interfacial rheological behavior from disturbances to the interface caused by the measurement itself. The proposed technique is indirect in that it does not require the introduction of a probe to deform the interface making it noninvasive. The viability of the technique is demonstrated through comprehensive fluid dynamics modeling of the flow involving a gas-liquid interface with different rheological behaviors.

1.
Edwards
,
D. A.
,
H.
Brenner
, and
D. T.
Wasan
, Interfacial Transport Processes and Rheology, Butterworth-Heinemann Series in Chemical Engineering (Butterworth-Heinemann, Boston, 1991).
2.
Slattery
,
J. C.
,
L. M. C.
Sagis
, and
E. S.
Oh
,
Interfacial Transport Phenomena
,
2nd ed.
(
Springer
,
New York
,
2007
).
3.
Miller
,
R.
, and
L.
Liggieri
,
Interfacial Rheology
(
CRC
,
Boca Raton, FL
,
2019
).
4.
Rane
,
J. P.
,
V.
Pauchard
,
A.
Couzis
, and
S.
Banerjee
, “
Interfacial rheology of asphaltenes at oil-water interfaces and interpretation of the equation of state
,”
Langmuir
29
,
4750
4759
(
2013
).
5.
Kumar
,
N.
, and
A.
Mandal
, “
Surfactant stabilized oil-in-water nanoemulsion: Stability, interfacial tension, and rheology study for enhanced oil recovery application
,”
Energy Fuels
32
,
6452
6466
(
2018
).
6.
Leiske
,
D. L.
,
S. R.
Raju
,
H. A.
Ketelson
,
T. J.
Millar
, and
G. G.
Fuller
, “
The interfacial viscoelastic properties and structures of human and animal meibomian lipids
,”
Exp. Eye Res.
90
,
598
604
(
2010
).
7.
Hermans
,
E.
, and
J.
Vermant
, “
Interfacial shear rheology of DPPC under physiologically relevant conditions
,”
Soft Matter
10
,
175
186
(
2014
).
8.
Sachan
,
A. K.
, and
J. A.
Zasadzinski
, “
Interfacial curvature effects on the monolayer morphology and dynamics of a clinical lung surfactant
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
E134
E143
(
2018
).
9.
Zuo
,
Y. Y.
,
W. E.
Uspal
, and
T.
Wei
, “
Airborne transmission of COVID-19: Aerosol dispersion, lung deposition, and virus-receptor interactions
,”
ACS Nano
14
,
16502
16524
(
2020
).
10.
Sosnowski
,
T. R.
, “
Inhaled aerosols: Their role in COVID-19 transmission, including biophysical interactions in the lungs
,”
Curr. Opin. Coll. Int. Sci.
54
,
101451
(
2021
).
11.
Ghati
,
A.
,
P.
Dam
,
D.
Tasdemir
,
A. K. H.
Sellami
,
G. C.
Sezgin
,
N.
Ildiz
,
O. L.
Franco
,
A. K.
Mandal
, and
I.
Ocsoy
, “
Exogenous pulmonary surfactant: A review focused on adjunctive therapy for severe acute respiratory syndrome coronavirus 2 including SP-A and SP-D as added clinical marker
,”
Curr. Opin. Coll. Int. Sci.
51
,
101413
(
2021
).
12.
Reichert
,
M. D.
,
N. J.
Alvarez
,
C. F.
Brooks
,
A. M.
Grillet
,
L. A.
Mondy
,
S. L.
Anna
, and
L. M.
Walker
, “
The importance of experimental design on measurement of dynamic interfacial tension and interfacial rheology in diffusion-limited surfactant systems
,”
Coll. Surf. A: Physiochem. Eng. Aspects
467
,
135
142
(
2015
).
13.
Fuller
,
G. G.
, and
J.
Vermant
, “
Complex fluid-fluid interfaces: Rheology and structure
,”
Annu. Rev. Chem. Biomed. Eng.
3
,
519
543
(
2012
).
14.
Langevin
,
D.
, “
Rheology of adsorbed surfactant monolayers at fluid surfaces
,”
Annu. Rev. Fluid Mech.
46
,
47
65
(
2013
).
15.
Guzmán
,
E.
,
J.
Tajuelo
,
J. M.
Pastor
,
Á.
Rubio
,
F.
Ortega
, and
R. G.
Rubio
, “
Shear rheology of fluid interfaces: Closing the gap between macro- and micro-rheology
,”
Curr. Opin. Coll. Int. Sci.
37
,
33
48
(
2018
).
16.
Jaensson
,
N.
, and
J.
Vermant
, “
Tensiometry and rheology of complex interfaces
,”
Curr. Opin. Coll. Int. Sci.
37
,
136
150
(
2018
).
17.
Manikantan
,
H.
, and
T. M.
Squires
, “
Surfactant dynamics: Hidden variables controlling fluid flows
,”
J. Fluid Mech.
892
,
P1
P152
(
2020
).
18.
Chatzigiannakis
,
E.
,
N.
Jaensson
, and
J.
Vermant
, “
Thin liquid films: Where hydrodynamics, capillarity, surface stresses and intermolecular forces meet
,”
Curr. Opin. Coll. Int. Sci.
53
,
101441
(
2021
).
19.
Venerus
,
D. C.
, and
H. C.
Öttinger
,
A Modern Course in Transport Phenomena
(
Cambridge University
,
Cambridge
,
2018
).
20.
Öttinger
,
H. C.
,
D.
Bedeaux
, and
D. C.
Venerus
, “
Nonequilibrium thermodynamics of transport through moving interfaces with application to bubble growth and collapse
,”
Phys. Rev. E
80
,
021606
(
2009
), 1–16.
21.
Öttinger
,
H. C.
, and
D. C.
Venerus
, “
Thermodynamic approach to interfacial transport phenomena: Single-component systems
,”
AIChE J.
60
,
1424
1433
(
2014
).
22.
Boussinesq
,
J.
, “
Existence of a superficial viscosity in the thin transition layer separating one liquid from another contiguous fluid
,”
Ann. Chim. Phys
29
,
349
357
(
1913
).
23.
Scriven
,
L. E.
, “
Dynamics of a fluid interface: Equation of motion for Newtonian surface fluids
,”
Chem. Eng. Sci.
12
,
98
108
(
1960
).
24.
Sagis
,
L. M. C.
, “
Dynamic properties of interfaces in soft matter: Experiments and theory
,”
Rev. Mod. Phys.
83
,
1367
1403
(
2011
).
25.
Sagis
,
L. M. C.
, and
P.
Fischer
, “
Nonlinear rheology of complex fluid–fluid interfaces
,”
Curr. Opin. Coll. Int. Sci.
18
,
520
529
(
2014
).
26.
Carrozza
,
M. A.
,
M.
Hütter
,
M. A.
Hulsen
, and
P. D.
Anderson
, “
Constitutive framework for rheologically complex interfaces with an application to elastoviscoplasticity
,”
J. Non-Newtonian Fluid Mech.
301
,
104726
(
2022
).
27.
Miller
,
R.
,
J. K.
Ferri
,
A.
Javadi
,
J.
Krägel
,
N.
Mucic
, and
R.
Wüstneck
, “
Rheology of interfacial layers
,”
Colloid Polym. Sci.
288
,
937
950
(
2010
).
28.
Erni
,
P.
, “
Deformation modes of complex fluid interfaces
,”
Soft Matter
7
,
7586
7600
(
2011
).
29.
Mannheimer
,
R. J.
, and
R. A.
Burton
, “
A theoretical estimation of viscous-interaction effects with a torsional (knife-edge) surface viscometer
,”
J. Colloid Interface Sci.
32
,
73
80
(
1970
).
30.
Soo-Gun
,
O. H.
, and
J. C.
Slattery
, “
Disk and biconical interfacial viscometers
,”
J. Colloid Interface Sci.
67
,
516
525
(
1978
).
31.
Jiang
,
T.-S.
,
J.-D.
Chen
, and
J. C.
Slattery
, “
Nonlinear interfacial stress-deformation behavior measured with several interfacial viscometers
,”
J. Colloid Interface Sci.
96
,
7
19
(
1983
).
32.
Vandebril
,
S.
,
A.
Franck
,
G. G.
Fuller
,
P.
Moldenaers
, and
J.
Vermant
, “
A double wall-ring geometry for interfacial shear rheometry
,”
Rheol. Acta
49
,
131
144
(
2010
).
33.
Jaishankar
,
A.
,
V.
Sharma
, and
G. H.
McKinley
, “
Interfacial viscoelasticity, yielding and creep ringing of globular protein-surfactant mixtures
,”
Soft Matter
7
,
7623
7634
(
2011
).
34.
Lopez
,
J. M.
, and
A. H.
Hirsa
, “
Coupling of the interfacial and bulk flow in knife-edge viscometers
,”
Phys. Fluids
27
,
042102
(
2015
).
35.
Underhill
,
P. T.
,
A. H.
Hirsa
, and
J. M.
Lopez
, “
Modelling steady shear flows of Newtonian liquids with non-Newtonian interfaces
,”
J. Fluid Mech.
814
,
5
23
(
2017
).
36.
Rasheed
,
F.
,
A.
Raghunandan
, and
A. H.
Hirsa
, “
Oscillatory shear rheology measurements and Newtonian modeling of insoluble monolayers
,”
Phys. Rev. Fluids
2
,
044002
(
2017
).
37.
Reynaert
,
S.
,
C. F.
Brooks
,
P.
Moldenaers
,
J.
Vermant
, and
G. G.
Fuller
, “
Analysis of the magnetic rod interfacial stress rheometer
,”
J. Rheol.
52
,
261
285
(
2008
).
38.
Verwijlen
,
T.
,
P.
Moldenaers
,
H. A.
Stone
, and
J.
Vermant
, “
Study of the flow field in the magnetic interfacial stress rheometer
,”
Langmuir
27
,
9345
9358
(
2011
).
39.
Anguelouch
,
A.
,
R. L.
Leheny
, and
D. H.
Reich
, “
Application of ferromagnetic nanowires to interfacial microrheology
,”
Appl. Phys. Lett.
89
,
111914
(
2006
).
40.
Choi
,
S. Q.
,
S.
Steltenkamp
,
J. A.
Zasadzinski
, and
T. M.
Squires
, “
Active microrheology and simultaneous visualization of sheared phospholipid monolayers
,”
Nature Comm.
2
,
312
(
2011
).
41.
Zell
,
Z. A.
,
A.
Nowbahar
,
V.
Mansard
,
L. G.
Leal
,
S. S.
Deshmukh
,
J. M.
Mecca
,
C. J.
Tucker
, and
T. M.
Squires
, “
Surface shear inviscidity of soluble surfactants
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
3677
3682
(
2014
).
42.
Sickert
,
M.
, and
F.
Rondelez
, “
Shear viscosity of Langmuir monolayers in the low-density limit
,”
Phys. Rev. Lett.
90
,
126104
(
2003
).
43.
Ortega
,
F.
,
H.
Ritacco
, and
R. G.
Rubio
, “
Interfacial microrheology: Particle tracking and related techniques
,”
Curr. Opin. Coll. Int. Sci.
15
,
237
245
(
2010
).
44.
Samaniuk
,
J. R.
, and
J.
Vermant
, “
Micro and macrorheology at fluid-fluid interfaces
,”
Soft Matter
10
,
7023
7033
(
2014
).
45.
Mannheimer
,
R. J.
, and
R. S.
Schechter
, “
An improved apparatus and analysis for surface rheological measurements
,”
J. Colloid Interface Sci.
32
,
195
211
(
1970
).
46.
Pintar
,
A.
,
A. B.
Israel
, and
D. T.
Wasan
, “
Interfacial shear viscosity phenomena in solutions of macromolecules
,”
J. Colloid Interface Sci.
37
,
52
67
(
1971
).
47.
Stone
,
H. A.
, “
Fluid motion of monomolecular films in a channel flow geometry
,”
Phys. Fluids
7
,
2931
2937
(
1995
).
48.
Krieg
,
R.
,
J.
Son
, and
R.
Flumerfelt
, “
A new method for surface shear viscosity measurements: Decay of surface motions at a rotated gas-liquid interface
,”
J. Colloid Interface Sci.
79
,
14
20
(
1981
).
49.
Prieditis
,
J.
,
N.
Amundson
, and
R. W.
Flumerfelt
, “
Interfacial viscoelastic response to oscillatory shear deformations
,”
J. Colloid Interface Sci.
119
,
303
314
(
1987
).
50.
Hassager
,
O.
, and
H.
Westborg
, “
Analysis of the transient rotating cylinder apparatus for the measurement of liquid-liquid interface shear viscosity
,”
J. Colloid Interface Sci.
119
,
524
530
(
1987
).
51.
Erni
,
P.
,
P.
Fischer
,
E. J.
Windhab
,
V.
Kusnezzov
,
H.
Stettin
, and
J.
Läuger
, “
Stress- and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces
,”
Rev. Sci. Inst.
74
,
4916
4923
(
2003
).
52.
Renggli
,
D.
,
A.
Alicke
,
R. H.
Ewoldt
, and
J.
Vermant
, “
Operating windows for oscillatory interfacial shear rheology
,”
J. Rheol.
64
,
141
160
(
2020
).
53.
Li
,
D.
, and
J. C.
Slattery
, “
Measuring nonlinear surface stress-deformation behavior for aqueous solutions of dodecyl sodium sulfate and dodecyl alcohol
,”
J. Colloid Interface Sci.
125
,
190
197
(
1988
).
54.
Muntz
,
I.
,
J. A.
Richards
,
S.
Brown
,
A. B.
Schofield
,
M.
Rey
, and
J. H.
Thijssen
, “
Contactless interfacial rheology: Probing shear at liquid-liquid interfaces without an interfacial geometry via fluorescence microscopy
,”
J. Rheol.
67
,
67
90
(
2023
).
55.
Stevenson
,
P.
, “
Remarks on the shear viscosity of surfaces stabilised with soluble surfactants
,”
J. Colloid Interface Sci.
290
,
603
606
(
2005
).
56.
Krägel
,
J.
, and
S. R.
Derkatch
, “
Interfacial shear rheology
,”
Curr. Opin. Coll. Int. Sci.
15
,
246
255
(
2010
).
57.
Walters
,
K.
,
Rheometry
(
Wiley
,
New York
,
1975
).
58.
Macosko
,
C. W.
,
Rheology: Principles, Measurements and Applications
(
VCH
,
New York
,
1994
).
59.
Oza
,
A. U.
, and
D. C.
Venerus
, “
The dynamics of parallel-plate and cone-plate flows
,”
Phys. Fluids
33
,
023102
(
2021
).
60.
Caracotsios
,
M.
, and
W. E.
Stewart
, “
Sensitivity analysis of initial-boundary-value problems with mixed PDEs and algebraic equations: Applications to chemical and biochemical systems
,”
Comput. Chem. Eng.
19
,
1019
1030
(
1995
).
61.
Barman
,
S.
, and
G. F.
Christopher
, “
Simultaneous interfacial rheology and microstructure measurement of densely aggregated particle laden interfaces using a modified double wall ring interfacial rheometer
,”
Langmuir
30
,
9752
9760
(
2014
).
62.
Thijssen
,
J. H. J.
, and
J.
Vermant
, “
Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) pickering emulsions
,”
J. Phys.: Condens. Matter
30
,
023002
(
2018
).
63.
Maestro
,
A.
,
E.
Santini
, and
E.
Guzmán
, “
Physico-chemical foundations of particle-laden fluid interfaces
,”
Eur. Phys. J. E
41
,
97
(
2018
).
64.
Vrentas
,
J. S.
,
D. C.
Venerus
, and
C. M.
Vrentas
, “
An exact analysis of reservoir effects for rotational viscometers
,”
Chem. Eng. Sci.
46
,
33
37
(
1991
).
You do not currently have access to this content.