The vane-in-cup (VIC) geometry has been widely used for the rheological characterization of yield-stress fluids because it minimizes slip effects at the liquid/solid interface of the rotating geometry and reduces sample damage during the loading process. However, severe kinematic limitations arising from the spatial complexity of mixed shear and extensional flow have been identified for quantitative rheometrical measurements in complex fluids. Recently, vanes with fractal cross sections have been suggested as alternatives for accurate rheometry of elastoviscoplastic fluids. In this work, the steady fractal vane-in-cup (fVIC) flow of a Newtonian fluid and a nonthixotropic Carbopol® 940 microgel as well as the unsteady flow of a thixotropic κ-Carrageenan gel are analyzed using rheo-particle image velocimetry (Rheo-PIV). We describe the velocity distributions in all cases and show that the fVIC produces an almost axisymmetric flow field and rotation rate-independent “effective radius” when used with both the Newtonian fluid and the microgel. These findings are supported by 2D simulation results and enable the safe use of both the Couette analogy and the torque-to-stress conversion scheme for a 24-arm fVIC as well as validate it as a reliable rheometrical tool for characterization of a variety of complex fluids. With the κ-Carrageenan gel, however, axial shearing/compression while inserting the rheometric tool into the sample also accelerates syneresis that ultimately results in shear banding for Couette and fVIC flows. By comparing results obtained using the 24-arm fVIC with other conventional geometries, we investigate the effect that the lateral and cross-sectional (shearing/compressing) area of the measuring fixture have on disrupting the κ-Carrageenan gel during its insertion.

1.
Flodin
,
N.
, and
B.
Broms
, “
Historical development of civil engineering in soft clay
,” in
Soft Clay Engineering (Development in Geotechnical Engineering)
, edited by
E. W.
Brand
and
R. P.
Brenner
(
Elsevier Amsterdam
,
The Netherlands
,
1981
), Vol.
20
.
2.
Dzuy
,
N. Q.
, and
D. V.
Boger
, “
Yield stress measurement for concentrated suspensions
,”
J. Rheol.
27
,
321
349
(
1983
).
3.
Barnes
,
H. A.
, and
J. O.
Carnali
, “
The vane-in-cup as a novel rheometer geometry for shear thinning and thixotropic materials
,”
J. Rheol.
36
,
841
866
(
1990
).
4.
Bousmina
,
M.
,
A.
Aït-Kadi
, and
J. B.
Faisant
, “
Determination of shear rate and viscosity from batch mixer data
,”
J. Rheol.
43
,
415
433
(
1999
).
5.
Aït-Kadi
,
A.
,
P.
Marchal
,
L.
Choplin
,
A.-S.
Chrissemant
, and
M.
Bousmina
, “
Quantitative analysis of mixer-type rheometers using the Couette analogy
,”
Can. J. Chem. Eng.
80
,
1166
1174
(
2002
).
6.
Estellé
,
P.
,
C.
Lanos
,
A.
Perrot
, and
S.
Amziane
, “
Processing the vane shear flow data from Couette analogy
,”
Appl. Rheol.
18
,
34037
(
2008
).
7.
Medina-Bañuelos
,
E. F.
,
B. M.
Marín-Santibáñez
,
J.
Pérez-González
, and
D. M.
Kalyon
, “
Rheo-PIV analysis of the vane in cup flow of a viscoplastic microgel
,”
J. Rheol.
63
,
905
915
(
2019
).
8.
Atkinson
,
C.
, and
J. D.
Sherwood
, “
The torque on a rotating n-bladed vane in a Newtonian fluid or linear elastic medium
,”
Proc. R. Soc. London A
438
,
183
196
(
1992
).
9.
Sherwood
,
J. D.
, and
G. H.
Meeten
, “
The use of the vane to measure the shear modulus of linear elastic solids
,”
J. Non-Newtonian Fluid Mech.
41
,
101
118
(
1991
).
10.
Potanin
,
A.
, “
3D simulations of the flow of thixotropic fluids, in large gap Couette and vane-cup geometries
,”
J. Non-Newtonian Fluid Mech.
165
,
299
312
(
2010
).
11.
Keentok
,
M.
,
J. F.
Milthorpe
, and
E.
O'Donovan
, “
On the shearing zone around rotating vanes in plastic liquids: Theory and experiment
,”
J. Non-Newtonian Fluid Mech.
17
,
23
35
(
1985
).
12.
Baravian
,
C.
,
A.
Lalante
, and
A.
Parker
, “
Vane rheometry with a large, finite gap
,”
Appl. Rheol.
12
,
81
87
(
2002
).
13.
Savarmand
,
S.
,
M.
Heniche
,
V.
Béchard
,
F.
Bertrand
, and
P. J.
Carreau
, “
Analysis of the vane rheometer using 3D finite element simulation
,”
J. Rheol.
51
,
161
177
(
2007
).
14.
Zhu
,
H.
,
N. S.
Martys
,
C.
Ferraris
, and
D. D.
Kee
, “
A numerical study of the flow of Bingham-like fluids in two-dimensional vane and cylinder rheometers using a smoothed particle hydrodynamics (SPH) based method
,”
J. Non-Newtonian Fluid Mech.
165
,
362
375
(
2010
).
15.
Ovarlez
,
G.
,
F.
Mahaut
,
F.
Bertrand
, and
X.
Chateau
, “
Flows and heterogeneities with a vane tool: MRI measurements
,”
J. Rheol.
55
,
197
223
(
2011
).
16.
Nazari
,
B.
,
R. H.
Moghaddam
, and
D.
Bousfield
, “
A three-dimensional model of a vane rheometer
,”
Int. J. Heat Fluid Flow
42
,
289
295
(
2013
).
17.
Marchesini
,
F. H.
,
M. F.
Naccache
,
A.
Abdu
,
A. A.
Alicke
, and
P. R.
de Souza Mendes
, “
Rheological characterization of yield-stress materials: Flow pattern and apparent wall slip
,”
Appl. Rheol.
25
,
32
41
(
2015
).
18.
Chaparian
,
E.
,
C. E.
Owens
, and
G. H.
McKinley
, “
Computational rheometry of yielding and viscoplastic flow in vane-and-cup rheometer fixtures
,”
J. Non-Newtonian Fluid Mech.
307
,
104857
(
2022
).
19.
Owens
,
C.
,
A. J.
Hart
, and
G. H.
McKinley
, “
Improved rheometry of yield stress fluids using bespoke fractal 3D printed vanes
,”
J. Rheol.
64
,
643
662
(
2019
).
20.
Carraretto
,
I. M.
,
C. E.
Owens
, and
G. H.
McKinley
, “
Time-resolved rheometry of coarsening foams using three dimensionally printed fractal vanes
,”
Phys. Fluids
34
,
113108
(
2022
).
21.
Ovarlez
,
G.
,
S.
Cohen-Addad
,
K.
Krishan
,
J.
Goyon
, and
P.
Coussot
, “
On the existence of a simple yield stress fluid behavior
,”
J. Non-Newtonian Fluid Mech.
193
,
68
79
(
2013
).
22.
Ramakrishnan
,
S.
,
C. G.
Gerardin
, and
R. K.
Prud'homme
, “
Syneresis of carrageenan gels: NMR and rheology
,”
Soft Mater.
2
,
145
153
(
2004
).
23.
Medina-Bañuelos
,
E. F.
,
B. M.
Marín-Santibáñez
,
J.
Pérez-González
,
M.
Malik
, and
D. M.
Kalyon
, “
Tangential annular (Couette) flow of a viscoplastic microgel with wall slip
,”
J. Rheol.
61
,
1007
1022
(
2017
).
24.
Medina-Bañuelos
,
E. F.
,
B. M.
Marín-Santibáñez
,
J.
Pérez-González
, and
F.
Rodríguez-González
, “
Couette flow of a yield-stress fluid with slip as studied by rheo-PIV
,”
Appl. Rheol.
27
,
18
28
(
2017
).
25.
Medina-Bañuelos
,
E. F.
,
B. M.
Marín-Santibáñez
,
J.
Pérez-González
, and
F.
Rodríguez-González
, “
Rheo-PIV analysis of the steady torsional parallel-plate flow of a viscoplastic microgel with wall slip
,”
J. Rheol.
66
,
31
48
(
2022
).
26.
Rinaudo
,
M.
, “
Seaweed polysaccharides
,” in
Comprehensive Glycoscience
, edited by
H.
Kamerling
(
Elsevier
, Amsterdam,
2007
), Vol.
2
, pp.
691
735
, ISBN: 9780444519672.
27.
Macosko
,
C. W.
,
Rheology: Principles, Measurements, and Applications
(
Wiley-VCH
,
New York
,
1994
).
28.
Kalyon
,
D. M.
, “
Apparent slip and viscoplasticity of concentrated suspensions
,”
J. Rheol.
49
,
621
640
(
2005
).
29.
Kalyon
,
D. M.
, and
S.
Aktaş
, “
Factors affecting the rheology and processability of highly filled suspensions
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
229
254
(
2014
).
30.
Aktas
,
S.
,
D. M.
Kalyon
,
B. M.
Marín-Santibáñez
, and
J.
Pérez-González
, “
Shear viscosity and wall slip behavior of a viscoplastic hydrogel
,”
J. Rheol.
58
(
2
),
513
535
(
2014
).
31.
Meeker
,
S. P.
,
R. T.
Bonnecaze
, and
M.
Cloitre
, “
Slip and flow in pastes of soft particles: Direct observation and rheology
,”
J. Rheol.
48
,
1295
1320
(
2004
).
32.
Meeker
,
S. P.
,
R. T.
Bonnecaze
, and
M.
Cloitre
, “
Slip and flow in soft particle pastes
,”
Phys. Rev. Lett.
92
,
198302
(
2004
).
33.
Chaparian
,
E.
, and
O.
Tammisola
, “
Sliding flows of yield-stress fluids
,”
J. Fluid Mech.
911
,
A17
(
2021
).
34.
Phillips
,
C. O.
, and
P. A.
Williams
,
Handbook of Hydrocolloids
(
Woodhead
,
Cambridge
,
2009
).
35.
Divoux
,
T.
,
M. A.
Fardin
,
S.
Manneville
, and
S.
Lerouge
, “
Shear banding of complex fluids
,”
Annu. Rev. Fluid Mech.
48
,
81
103
(
2016
).
36.
Marín-Santibáñez
,
B. M.
,
J.
Pérez-González
, and
F.
Rodríguez-González
, “
Origin of shear thickening in semidilute wormlike micellar solutions and evidence of elastic turbulence
,”
J. Rheol.
58
,
1917
1933
(
2014
).
37.
Larson
,
R. G.
, and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
,
477
501
(
2019
).
38.
Ortega-Avila
,
J. F.
,
J.
Pérez-González
,
B. M.
Marín-Santibáñez
,
F.
Rodríguez-González
,
S.
Aktas
,
M.
Malik
, and
D. M.
Kalyon
, “
Axial annular flow of a viscoplastic microgel with wall slip
,”
J. Rheol.
60
,
503
515
(
2016
).
39.
Méndez-Sánchez
,
A. F.
,
J.
Pérez-González
,
L.
de Vargas
,
J. R.
Castrejón-Pita
,
A. A.
Casterjón-Pita
, and
G.
Huelsz
, “
Particle image velocimetry of the unstable capillary flow of a micelar solution
,”
J. Rheol.
47
,
1455
1466
(
2003
).
40.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000639 for three videos of the insertion of the solid cylinder, 24-arm fractal vane, and 6-blade cruciform vane, respectively, into the κ-Carrageenan gel. For this, the gel samples were gently loaded into the cup as described in Sec. II A. Then, the filled cup was allowed to rest for three minutes before immersing the measurement geometry at a rate of 300 μm/s, while being illuminated with a halogen lamp and observed between crossed polarizers. The bright areas (birefringence) in the videos qualitatively indicate the extent to which the gel is distorted by each fixture.

Supplementary Material

You do not currently have access to this content.