Flow-based manipulation of particles is an essential tool for studying soft materials, but prior work has nearly exclusively relied on using two-dimensional (2D) flows generated in planar microfluidic geometries. In this work, we demonstrate 3D trapping and manipulation of freely suspended particles, droplets, and giant unilamellar vesicles in 3D flow fields using automated flow control. Three-dimensional flow fields including uniaxial extension and biaxial extension are generated in 3D-printed fluidic devices combined with active feedback control for particle manipulation in 3D. Flow fields are characterized using particle tracking velocimetry complemented by finite-element simulations for all flow geometries. Single colloidal particles (3.4  μm diameter) are confined in low viscosity solvent (1.0 mPa s) near the stagnation points of uniaxial and biaxial extensional flow for long times ( 10 min) using active feedback control. Trap stiffness is experimentally determined by analyzing the power spectral density of particle position fluctuations. We further demonstrate precise manipulation of colloidal particles along user-defined trajectories in three dimensions using automated flow control. Newtonian liquid droplets and GUVs are trapped and deformed in precisely controlled uniaxial and biaxial extensional flows, which is a new demonstration for 3D flow fields. Overall, this work extends flow-based manipulation of particles and droplets to three dimensions, thereby enabling quantitative analysis of colloids and soft materials in complex nonequilibrium flows.

1.
Ashkin
,
A.
,
J. M.
Dziedzic
,
J. E.
Bjorkholm
, and
S.
Chu
, “
Observation of a single-beam gradient force optical trap for dielectric particles
,”
Opt. Lett.
11
,
288
290
(
1986
).
2.
Strick
,
T. R.
,
J.-F.
Allemand
,
D.
Bensimon
,
A.
Bensimon
, and
V.
Croquette
, “
The elasticity of a single supercoiled DNA molecule
,”
Science
271
,
1835
1837
(
1996
).
3.
Hertz
,
H.
, “
Standing-wave acoustic trap for nonintrusive positioning of microparticles
,”
J. Appl. Phys.
78
,
4845
4849
(
1995
).
4.
Cohen
,
A. E.
, and
W.
Moerner
, “
Method for trapping and manipulating nanoscale objects in solution
,”
Appl. Phys. Lett.
86
,
093109
(
2005
).
5.
Bentley
,
B.
, and
L.
Leal
, “
A computer-controlled four-roll mill for investigations of particle and drop dynamics in two-dimensional linear shear flows
,”
J. Fluid Mech.
167
,
219
240
(
1986
).
6.
Schroeder
,
C. M.
, “
Single polymer dynamics for molecular rheology
,”
J. Rheol.
62
,
371
403
(
2018
).
7.
Kumar
,
D.
,
A.
Shenoy
,
S.
Li
, and
C. M.
Schroeder
, “
Orientation control and nonlinear trajectory tracking of colloidal particles using microfluidics
,”
Phys. Rev. Fluids
4
,
114203
(
2019
).
8.
Kumar
,
D.
,
A.
Shenoy
,
J.
Deutsch
, and
C. M.
Schroeder
, “
Automation and flow control for particle manipulation
,”
Curr. Opin. Chem. Eng.
29
,
1
8
(
2020
).
9.
Shenoy
,
A.
,
C. V.
Rao
, and
C. M.
Schroeder
, “
Stokes trap for multiplexed particle manipulation and assembly using fluidics
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
3976
3981
(
2016
).
10.
Tanyeri
,
M.
,
M.
Ranka
,
N.
Sittipolkul
, and
C. M.
Schroeder
, “
A microfluidic-based hydrodynamic trap: Design and implementation
,”
Lab Chip
11
,
1786
1794
(
2011
).
11.
Tanyeri
,
M.
, and
C. M.
Schroeder
, “
Manipulation and confinement of single particles using fluid flow
,”
Nano Lett.
13
,
2357
2364
(
2013
).
12.
Brimmo
,
A. T.
, and
M. A.
Qasaimeh
, “
Stagnation point flows in analytical chemistry and life sciences
,”
RSC Adv.
7
,
51206
51232
(
2017
).
13.
Shenoy
,
A.
,
M.
Tanyeri
, and
C. M.
Schroeder
, “
Characterizing the performance of the hydrodynamic trap using a control-based approach
,”
Microfluid. Nanofluid.
8
,
1055
1066
(
2015
).
14.
Love
,
J. C.
,
J. R.
Anderson
, and
G. M.
Whitesides
, “
Fabrication of three-dimensional microfluidic systems by soft lithography
,”
MRS Bull.
26
,
523
528
(
2001
).
15.
Anna
,
S. L.
,
G. H.
McKinley
,
D. A.
Nguyen
,
T.
Sridhar
,
S. J.
Muller
,
J.
Huang
, and
D. F.
James
, “
An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids
,”
J. Rheol.
45
,
83
114
(
2001
).
16.
Bach
,
A.
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Extensional viscosity for polymer melts measured in the filament stretching rheometer
,”
J. Rheol.
47
,
429
441
(
2003
).
17.
Chatraei
,
S.
,
C. W.
Macosko
, and
H.
Winter
, “
Lubricated squeezing flow: A new biaxial extensional rheometer
,”
J. Rheol.
25
,
433
443
(
1981
).
18.
Engmann
,
J.
,
C.
Servais
, and
A. S.
Burbidge
, “
Squeeze flow theory and applications to rheometry: A review
,”
J. Non-Newtonian Fluid Mech.
132
,
1
27
(
2005
).
19.
Teo
,
W. E.
, and
S.
Ramakrishna
, “
A review on electrospinning design and nanofibre assemblies
,”
Nanotechnology
17
,
R89
R106
(
2006
).
20.
Persano
,
L.
,
A.
Camposeo
,
C.
Tekmen
, and
D.
Pisignano
, “
Industrial upscaling of electrospinning and applications of polymer nanofibers: A review
,”
Macromol. Mater. Eng.
298
,
504
520
(
2013
).
21.
Barborik
,
T.
, and
M.
Zatloukal
, “
Steady-state modeling of extrusion cast film process, neck-in phenomenon, and related experimental research: A review
,”
Phys. Fluids
32
,
061302
(
2020
).
22.
Choi
,
K.-J.
,
J. E.
Spruiell
, and
J. L.
White
, “
Orientation and morphology of high-density polyethylene film produced by the tubular blowing method and its relationship to process conditions
,”
J. Polym. Sci.: Polym. Phys. Ed.
20
,
27
47
(
1982
).
23.
van Berkel
,
J. G.
,
N.
Guigo
,
J. J.
Kolstad
, and
N.
Sbirrazzuoli
, “
Biaxial orientation of poly (ethylene 2, 5-furandicarboxylate): An explorative study
,”
Macromol. Mater. Eng.
303
,
1700507
(
2018
).
24.
Nishioka
,
A.
,
T.
Takahashi
,
Y.
Masubuchi
,
J.-I.
Takimoto
, and
K.
Koyama
, “
Description of uniaxial, biaxial, and planar elongational viscosities of polystyrene melt by the K-BKZ model
,”
J. Non-Newtonian Fluid Mech.
89
,
287
301
(
2000
).
25.
Wagner
,
M.
, and
J.
Schaeffer
, “
Nonlinear strain measures for general biaxial extension of polymer melts
,”
J. Rheol.
36
,
1
26
(
1992
).
26.
Haward
,
S.
,
C.
Hopkins
,
K.
Toda-Peters
, and
A. Q.
Shen
, “
Microfluidic analog of an opposed-jets device
,”
Appl. Phys. Lett.
114
,
223701
(
2019
).
27.
Fuller
,
G. G.
,
C. A.
Cathey
,
B.
Hubbard
, and
B. E.
Zebrowski
, “
Extensional viscosity measurements for low-viscosity fluids
,”
J. Rheol.
3
,
235
249
(
1987
).
28.
Cathey
,
C. A.
, and
G. G.
Fuller
, “
Uniaxial and biaxial extensional viscosity measurements of dilute and semi-dilute solutions of rigid rod polymers
,”
J. Non-Newtonian Fluid Mech.
30
,
303
316
(
1988
).
29.
Hermansky
,
C. A.
, and
D. V.
Boger
, “
Opposing-jet viscometry of fluids with viscosity approaching that of water
,”
J. Non-Newtonian Fluid Mech.
56
,
1
14
(
1995
).
30.
Gonzalez
,
J.
, and
B.
Liu
, “
Symmetry-based nonperturbative micromanipulation in a three-dimensional microfluidic device
,”
Phys. Rev. Fluids
5
,
044202
(
2020
).
31.
Afonso
,
A.
,
M.
Alves
, and
F.
Pinho
, “
Purely elastic instabilities in three-dimensional cross-slot geometries
,”
J. Non-Newtonian Fluid Mech.
165
,
743
751
(
2010
).
32.
Cruz
,
F.
,
R.
Poole
,
A.
Afonso
,
F.
Pinho
,
P.
Oliveira
, and
M.
Alves
, “
Influence of channel aspect ratio on the onset of purely-elastic flow instabilities in three-dimensional planar cross-slots
,”
J. Non-Newtonian Fluid Mech.
227
,
65
79
(
2016
).
33.
Zografos
,
K.
,
N.
Burshtein
,
A. Q.
Shen
,
S. J.
Haward
, and
R. J.
Poole
, “
Elastic modifications of an inertial instability in a 3D cross-slot
,”
J. Non-Newtonian Fluid Mech.
262
,
12
24
(
2018
).
34.
Burshtein
,
N.
,
S. T.
Chan
,
K.
Toda-Peters
,
A. Q.
Shen
, and
S. J.
Haward
, “
3D-printed glass microfluidics for fluid dynamics and rheology
,”
Curr. Opin. Colloid Interface Sci.
43
,
1
14
(
2019
).
35.
Sun
,
H.
,
Y.
Jia
,
Y.
Dong
,
D.
Dong
, and
Z.
J.
, “
Combining additive manufacturing with microfluidics: An emerging method for developing novel organs-on-chips
,”
Curr. Opin. Chem. Eng.
28
,
1
9
(
2020
).
36.
Lee
,
W.
,
D.
Kwon
,
W.
Choi
,
G. Y.
Jung
,
A. K.
Au
,
A.
Folch
, and
S.
Jeon
, “
3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section
,”
Sci. Rep.
5
,
1
7
(
2015
).
37.
Spivey
,
E. C.
,
B.
Xhemalce
,
J. B.
Shear
, and
I. J.
Finkelstein
, “
3D-printed microfluidic microdissector for high-throughput studies of cellular aging
,”
Anal. Chem.
86
,
7406
7412
(
2014
).
38.
Anthony
,
S.
,
L.
Zhang
, and
S.
Granick
, “
Methods to track single-molecule trajectories
,”
Langmuir
22
,
5266
5272
(
2006
).
39.
Hsiao
,
K.-W.
,
J.
Dinic
,
Y.
Ren
,
V.
Sharma
, and
C. M.
Schroeder
, “
Passive non-linear microrheology for determining extensional viscosity
,”
Phys. Fluids
29
,
121603
(
2017
).
40.
Shum
,
H.
,
A.
Sauret
,
A.
Fernandez-Nieves
,
H.
Stone
, and
D.
Weitz
, “
Corrugated interfaces in multiphase core-annular flow
,”
Phys. Fluids
22
,
082002
(
2010
).
41.
Tsai
,
S.
,
J.
Wexler
,
J.
Wan
, and
H.
Stone
, “
Microfluidic ultralow interfacial tensiometry with magnetic particles
,”
Lab Chip
13
,
119
125
(
2013
).
42.
Motagamwala
,
A. H.
, A microfluidic, extensional flow device for manipulating soft particles, Ph.D. thesis, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 2013.
43.
Angelova
,
M.
,
S.
Soléau
,
P.
Méléard
,
F.
Faucon
, and
P.
Bothorel
, Preparation of giant vesicles by external AC electric fields. Kinetics and applications, in
Trends Colloid Interface Science VI
(Steinkopff, Darmstadt, 1992), pp. 127–131.
44.
Kumar
,
D.
,
C. M.
Richter
, and
C. M.
Schroeder
, “
Conformational dynamics and phase behavior of lipid vesicles in a precisely controlled extensional flow
,”
Soft Matter
16
,
337
347
(
2020
).
45.
Kumar
,
D.
, and
C. M.
Schroeder
, “
Nonlinear transient and steady-state stretching of deflated vesicles in flow
,”
Langmuir
37
,
13976
13984
(
2021
).
46.
Lansdorp
,
B. M.
, and
O. A.
Saleh
, “
Power spectrum and allan variance methods for calibrating single-molecule video-tracking instruments
,”
Rev. Sci. Instrum.
83
,
025115
(
2012
).
47.
Tanyeri
,
M.
,
E. M.
Johnson-Chavarria
, and
C. M.
Schroeder
, “
Hydrodynamic trap for single particles and cells
,”
Appl. Phys. Lett.
96
,
224101
(
2010
).
48.
Hsiao
,
K.-W.
,
C.
Sasmal
,
J.
Ravi Prakash
, and
C. M.
Schroeder
, “
Direct observation of dna dynamics in semidilute solutions in extensional flow
,”
J. Rheol.
61
,
151
167
(
2017
).
49.
Patel
,
S. F.
,
C. D.
Young
,
C. E.
Sing
, and
C. M.
Schroeder
, “
Nonmonotonic dependence of comb polymer relaxation on branch density in semidilute solutions of linear polymers
,”
Phys. Rev. Fluids
5
,
121301
(
2020
).
50.
Johnson-Chavarria
,
E. M.
,
U.
Agrawal
,
M.
Tanyeri
,
T. E.
Kuhlman
, and
C. M.
Schroeder
, “
Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution
,”
Lab Chip
14
,
2688
2697
(
2014
).
51.
Taylor
,
G. I.
, “
The formation of emulsions in definable fields of flow
,”
Proc. R. Soc. London, Ser. A
146
,
501
523
(
1934
).
52.
Stone
,
H.
, and
L.
Leal
, “
A note concerning drop deformation and breakup in biaxial extensional flows at low Reynolds numbers
,”
J. Colloid Interface Sci.
133
,
340
347
(
1989
).
53.
Favelukis
,
M.
, “
A drop in uniaxial and biaxial nonlinear extensional flows
,”
Phys. Fluids
29
,
087102
(
2017
).
54.
Suryo
,
R.
, and
O. A.
Basaran
, “
Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid
,”
Phys. Fluids
18
,
082102
(
2006
).
55.
Brosseau
,
Q.
, and
P.
Vlahovska
, “
Streaming from the equator of a drop in an external electric field
,”
Phys. Rev. Lett.
119
,
034501
(
2017
).
56.
Narsimhan
,
V.
,
A. P.
Spann
, and
E. S.
Shaqfeh
, “
The mechanism of shape instability for a vesicle in extensional flow
,”
J. Fluid Mech.
750
,
144
190
(
2014
).
57.
Bouvrais
,
H.
,
T.
Pott
,
L. A.
Bagatolli
,
J. H.
Ipsen
, and
P.
Méléard
, “
Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers
,”
Biochim. Biophys. Acta
1798
,
1333
1337
(
2010
).
58.
Fang
,
W.-Z.
,
T.
Xiong
,
O. S.
Pak
, and
L.
Zhu
, “
Data-driven intelligent manipulation of particles in microfluidics
,”
Adv. Sci.
10
,
2205382
(
2023
).
59.
Tu
,
M.
,
M.
Lee
,
R. M.
Robertson-Anderson
, and
C. M.
Schroeder
, “
Direct observation of ring polymer dynamics in the flow-gradient plane of shear flow
,”
Macromolecules
53
,
9406
9419
(
2020
).
60.
Murashima
,
T.
,
K.
Hagita
, and
T.
Kawakatsu
, “
Viscosity overshoot in biaxial elongational flow: Coarse-grained molecular dynamics simulation of ring–linear polymer mixtures
,”
Macromolecules
54
,
7210
7225
(
2021
).
61.
See supplementary material online for details on flow field characterization, z-position localization and 3D trajectories, dual-imaging setup, feedback control algorithm, live image processing, and droplet and vesicle deformation experiments.

Supplementary Material

You do not currently have access to this content.