The properties of polymer blend nanocomposites are typically associated with spatiotemporal distribution of nanoparticles within a polymer blend system. Here, we present in situ high-temperature confocal rheology studies to assess the effect of particle size on the extent of particle agglomeration, particle migration, and subsequently their influence on the coarsening dynamics of polymer blends filled with pristine silica particles. We investigate co-continuous polypropylene-poly(ethylene-co-vinyl acetate) blends filled with five different silica particles with a diameter ranging from 5 to 490 nm. While particle size does not play a role when particles are thermodynamically driven to their preferred polymer phase, a striking effect is achieved when particles are kinetically trapped at the interface. We find that the interparticle interaction largely driven by size dependent long-range repulsive forces governs their extent of agglomeration, severely affecting their ability to stabilize co-continuous morphology. Strikingly, the largest (490 nm) particles are more effective in suppressing coarsening than 5 nm particles, while 140 and 250 nm particles are found to be the most effective. We demonstrate that kinetic trapping of primary particles of either size is influenced by the interplay of interfacial folding during melt blending and Laplacian pressure exerted at the interface. These results extend our fundamental understanding of the stabilization of co-continuous morphology in polymer blends by particles.

1.
Tominaga
,
R.
,
Y.
Takeda
,
M.
Kotera
,
Y.
Suzuki
, and
A.
Matsumoto
, “
Non-destructive observation of internal structures of epoxy monolith and co-continuous network polymer using X-ray CT imaging for elucidation of their unique mechanical features and fracture mechanism
,”
Polymer
263
,
125433
(
2022
).
2.
Sarazin
,
P.
,
X.
Roy
, and
B. D.
Favis
, “
Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers
,”
Biomaterials
25
,
5965
5978
(
2004
).
3.
Li
,
J.
, and
M.
Wang
, “
Fabrication and evaluation of multiwalled carbon nanotube-containing bijels and bijels-derived porous nanocomposites
,”
Langmuir
39
,
1434
1443
(
2023
).
4.
Trifkovic
,
M.
,
A.
Hedegaard
,
K.
Huston
,
M.
Sheikhzadeh
, and
C. W.
Macosko
, “
Porous films via PE/PEO cocontinuous blends
,”
Macromolecules
45
,
6036
6044
(
2012
).
5.
Andrzejewski
,
J.
,
K.
Skórczewska
, and
A.
Kloziński
, “
Improving the toughness and thermal resistance of polyoxymethylene/poly(lactic acid) blends: Evaluation of structure-properties correlation for reactive processing
,”
Polymers
12
,
307
331
(
2020
).
6.
Pernot
,
H.
,
M.
Baumert
,
F.
Court
, and
L.
Leibler
, “
Design and properties of co-continuous nanostructured polymers by reactive blending
,”
Nat. Mater.
1
,
54
58
(
2002
).
7.
Bell
,
J. R.
,
K.
Chang
,
C. R.
López-Barrón
,
C. W.
Macosko
, and
D. C.
Morse
, “
Annealing of cocontinuous polymer blends: Effect of block copolymer molecular weight and architecture
,”
Macromolecules
43
,
5024
5032
(
2010
).
8.
Zhang
,
X.
,
H.
Zhang
,
M.
Zuo
,
J.
Zhong
,
X.
Shi
,
S.
Sun
,
L.
Yang
,
Y.
Song
, and
Q.
Zheng
, “
Effects of selective distribution and migration of poly(methyl methacrylate)-grafted nanoclays on the phase behavior of poly(methyl methacrylate)/poly (styrene-co-acrylonitrile) blends
,”
Polymer
252
,
124965
(
2022
).
9.
Salehiyan
,
R.
, and
S. S.
Ray
, “
Tuning the conductivity of nanocomposites through nanoparticle migration and interface crossing in immiscible polymer blends: A review on fundamental understanding
,”
Macromol. Mater. Eng.
304
,
1
33
(
2019
).
10.
Liu
,
X.-Q.
,
Q.-Y.
Wang
,
R.-Y.
Bao
,
W.
Yang
,
B.-H.
Xie
, and
M.-B.
Yang
, “
Suppressing phase retraction and coalescence of co-continuous polymer blends: Effect of nanoparticles and particle network
,”
RSC Adv.
4
,
49429
49441
(
2014
).
11.
Liu
,
X.-Q.
,
R.-H.
Li
,
R.-Y.
Bao
,
W.-R.
Jiang
,
W.
Yang
,
B.-H.
Xie
, and
M.-B.
Yang
, “
Suppression of phase coarsening in immiscible, co-continuous polymer blends under high temperature quiescent annealing
,”
Soft Matter
10
,
3587
3596
(
2014
).
12.
Pawar
,
S. P.
, and
S.
Bose
, “
Peculiar morphological transitions induced by nanoparticles in polymeric blends: Retarded relaxation or altered interfacial tension?
,”
Phys. Chem. Chem. Phys.
17
,
14470
14473
(
2015
).
13.
Li
,
L.
,
C.
Miesch
,
P. K.
Sudeep
,
A. C.
Balazs
,
T.
Emrick
,
T. P.
Russell
, and
R. C.
Hayward
, “
Kinetically trapped co-continuous polymer morphologies through intraphase gelation of nanoparticles
,”
Nano Lett.
11
,
1997
2003
(
2011
).
14.
Kubo
,
T.
,
N.
Tsujioka
,
N.
Tanaka
, and
K.
Hosoya
, “
Co-continuous monolithic titania prepared by organic polymer monolith as pore template
,”
Mater. Lett.
64
,
177
180
(
2010
).
15.
Sun
,
M.
,
C.
Chen
,
L.
Chen
, and
B.
Su
, “
Hierarchically porous materials: Synthesis strategies and emerging applications
,”
Front. Chem. Sci. Eng.
10
,
301
347
(
2016
).
16.
Jalali Dil
,
E.
, and
B. D.
Favis
, “
Localization of micro- and nano-silica particles in a high interfacial tension poly(lactic acid)/low density polyethylene system
,”
Polymer
77
,
156
166
(
2015
).
17.
Jalali Dil
,
E.
, and
B. D.
Favis
, “
Localization of micro- and nano-silica particles in heterophase poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends
,”
Polymer
76
,
295
306
(
2015
).
18.
Kou
,
Y.
,
A. T.
Cote
,
J.
Liu
,
X.
Cheng
, and
C. W.
Macosko
, “
Robust networks of interfacial localized graphene in cocontinuous polymer blends
,”
J. Rheol.
65
,
1139
1153
(
2021
).
19.
Fenouillot
,
F.
,
P.
Cassagnau
, and
J. C.
Majesté
, “
Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends
,”
Polymer
50
,
1333
1350
(
2009
).
20.
Elias
,
L.
,
F.
Fenouillot
,
J.-C.
Majesté
,
G.
Martin
, and
P.
Cassagnau
, “
Migration of nanosilica particles in polymer blends
,”
J. Polym. Sci., Part B: Polym. Phys.
46
,
1976
1983
(
2008
).
21.
Göldel
,
A.
,
G. R.
Kasaliwal
,
P.
Pötschke
, and
G.
Heinrich
, “
The kinetics of CNT transfer between immiscible blend phases during melt mixing
,”
Polymer
53
,
411
421
(
2012
).
22.
Bai
,
L.
,
R.
Sharma
,
X.
Cheng
, and
C. W.
Macosko
, “
Kinetic control of graphene localization in co-continuous polymer blends via melt compounding
,”
Langmuir
34
,
1073
1083
(
2018
).
23.
Bai
,
L.
,
S.
He
,
J. W.
Fruehwirth
,
A.
Stein
,
C. W.
Macosko
, and
X.
Cheng
, “
Localizing graphene at the interface of cocontinuous polymer blends: Morphology, rheology, and conductivity of cocontinuous conductive polymer composites
,”
J. Rheol.
61
,
575
587
(
2017
).
24.
Kim
,
D. Y.
,
J. B.
Lee
, and
D. Y.
Lee
, “
Selective localization of nanofiller on mechanical properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) nanocomposites via the surface energy and melt blending technique
,”
Macromolecules
55
,
3287
3300
(
2022
).
25.
Yoshida
,
S.
, and
M.
Trifkovic
, “
Unraveling the effect of 3D particle localization on coarsening dynamics and rheological properties in cocontinuous polymer blend nanocomposites
,”
Macromolecules
52
,
7678
7687
(
2019
).
26.
Feng
,
J. M.
,
X. Q.
Liu
,
R. Y.
Bao
,
W.
Yang
,
B. H.
Xie
, and
M. B.
Yang
, “
Suppressing phase coarsening in immiscible polymer blends using nano-silica particles located at the interface
,”
RSC Adv.
5
,
74295
74303
(
2015
).
27.
Shah
,
R. S.
,
S.
Bryant
, and
M.
Trifkovic
, “
Microstructural rearrangements and their rheological signature in coarsening of cocontinuous polymer blends
,”
Macromolecules
53
,
10918
10926
(
2020
).
28.
Bai
,
L.
,
J. W.
Fruehwirth
,
X.
Cheng
, and
C. W.
Macosko
, “
Dynamics and rheology of nonpolar bijels
,”
Soft Matter
11
,
5282
5293
(
2015
).
29.
Van Blaaderen
,
A.
, and
A.
Vrij
, “
Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres
,”
Langmuir
8
,
2921
2931
(
1992
).
30.
Bogush
,
G.
,
M.
Tracy
, and
C.
Zukoski
, “
Preparation of monodisperse silica particles: Control of size and mass fraction
,”
J. Non-Cryst. Solids
104
,
95
106
(
1988
).
31.
See supplementary material online for additional supplementary plots and figures and coarsening videos of composites.
32.
Cassagnau
,
P.
, “
Melt rheology of organoclay and fumed silica nanocomposites
,”
Polymer
49
,
2183
2196
(
2008
).
33.
Kinkead
,
B.
,
R.
Malone
,
G.
Smith
,
A.
Pandey
, and
M.
Trifkovic
, “
Bicontinuous intraphase jammed emulsion gels: A new soft material enabling direct isolation of co-continuous hierarchial porous materials
,”
Chem. Mater.
31
,
7601
7607
(
2019
).
34.
López-Barrón
,
C. R.
, and
C. W.
Macosko
, “
Direct measurement of interface anisotropy of bicontinuous structures via 3D image analysis
,”
Langmuir
26
,
14284
14293
(
2010
).
35.
Pan
,
Y.
,
D. W.
Schubert
,
J. E.
Ryu
,
E.
Wujick
,
C.
Liu
,
C.
Shen
, and
X.
Liu
, “
Dynamic oscillatory rheological properties of polystyrene/poly(methyl methacrylate) blends and their composites in the presence of carbon black
,”
Eng. Sci.
1
,
86
94
(
2018
).
36.
Song
,
Y.
,
C.
Xu
, and
Q.
Zheng
, “
Styrene–butadiene–styrene copolymer compatibilized carbon black/polypropylene/polystyrene composites with tunable morphology, electrical conduction and rheological stabilities
,”
Soft Matter
10
,
2685
2692
(
2014
).
37.
Fornes
,
T. D.
,
P. J.
Yoon
,
D. L.
Hunter
,
H.
Keskkula
, and
D. R.
Paul
, “
Effect of organoclay structure on nylon 6 nanocomposite morphology and properties
,”
Polymer
43
,
5915
5933
(
2002
).
38.
Shah
,
R. K.
, and
D.
Paul
, “
Nylon 6 nanocomposites prepared by a melt mixing masterbatch process
,”
Polymer
45
,
2991
3000
(
2004
).
39.
Jankong
,
S.
, and
K.
Srikulkit
, “
Preparation of polypropylene/hydrophobic silica nanocomposites
,”
J. Met., Mater. Miner.
18
,
143
146
(
2008
).
40.
Kasaliwal
,
G. R.
,
A.
Göldel
,
P.
Pötschke
, and
G.
Heinrich
, “
Influences of polymer matrix melt viscosity and molecular weight on MWCNT agglomerate dispersion
,”
Polymer
52
,
1027
1036
(
2011
).
41.
Socher
,
R.
,
B.
Krause
,
M. T.
Müller
,
R.
Boldt
, and
P.
Pötschke
, “
The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites
,”
Polymer
53
,
495
504
(
2012
).
42.
Persson
,
A. L.
, and
H.
Bertilsson
, “
Viscosity difference as distributing factor in selective absorption of aluminium borate whiskers in immiscible polymer blends
,”
Polymer
39
,
5633
5642
(
1998
).
43.
López-Barrón
,
C. R.
, and
C. W.
Macosko
, “
Rheological and morphological study of cocontinuous polymer blends during coarsening
,”
J. Rheol.
56
,
1315
1334
(
2012
).
44.
Kashi
,
S.
,
R. K.
Gupta
,
T.
Baum
,
N.
Kao
, and
S. N.
Bhattacharya
, “
Phase transition and anomalous rheological behaviour of polylactide/graphene nanocomposites
,”
Composites, Part B
135
,
25
34
(
2018
).
45.
Li
,
R.
,
W.
Yu
, and
C.
Zhou
, “
Rheological characterization of droplet-matrix versus Co-continuous morphology
,”
J. Macromol. Sci., Part B: Phys.
45B
,
889
898
(
2006
).
46.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University
,
Cambridge
,
2011
).
47.
Hooper
,
J. B.
,
K. S.
Schweizer
,
T. G.
Desai
,
R.
Koshy
, and
P.
Keblinski
, “
Structure, surface excess and effective interactions in polymer nanocomposite melts and concentrated solutions
,”
J. Chem. Phys.
121
,
6986
6997
(
2004
).
48.
Pötschke
,
P.
, and
D. R.
Paul
, “
Formation of co-continuous structures in melt-mixed immiscible polymer blends
,”
J. Macromol. Sci., Part C: Polym. Rev.
43
,
87
141
(
2003
).
49.
Léandri
,
J.
, and
A.
Würger
, “
Trapping energy of a spherical particle on a curved liquid interface
,”
J. Colloid Interface Sci.
405
,
249
255
(
2013
).
50.
Zeng
,
C.
,
F.
Brau
,
B.
Davidovitch
, and
A. D.
Dinsmore
, “
Capillary interactions among spherical particles at curved liquid interfaces
,”
Soft Matter
8
,
8582
8594
(
2012
).
51.
Lopez-Barron
,
C. R.
, and
C. W.
Macosko
, “
Characterizing interface shape evolution in immiscible polymer blends via 3D image analysis
,”
Langmuir
25
,
9392
9404
(
2009
).

Supplementary Material

You do not currently have access to this content.