Programmable hydrogels, such as thiolated hydrogels, are frequently used for tissue engineering and drug delivery applications, because they offer the ability to control gelation, degradation, and adhesion. Understanding how the mechanical properties of these materials change during these processes is essential as they directly impact cell fate and delivery efficacy. The rheology of hydrogels has been quantified primarily via bulk rheological methods. While such methods are effective, they require large sample volumes and result in the destruction of the sample; therefore, responses to multiple stimuli must be recorded across many different samples. We have developed a magnetic microwire rheometer that can characterize the rheology of small sample volumes while maintaining the integrity of the sample, such that the material response to a range of stimuli can be recorded for a single sample. This capability enables insights into time-dependent rheological changes, such as gelation and degradation, and can be applied to characterize dynamic in situ systems that are the basis for tissue scaffolding, drug delivery vehicles, and other important biological applications.

1.
Foster
,
A. A.
,
L. M.
Marquardt
, and
S. C.
Heilshorn
, “
The diverse roles of hydrogel mechanics in injectable stem cell transplantation
,”
Curr. Opin. Chem. Eng.
15
,
15
23
(
2017
).
2.
Zhang
,
Y. S.
, and
A.
Khademhosseini
, “
Advances in engineering hydrogels
,”
Science
356
,
eaaf3627
(
2017
).
3.
Wang
,
Y.
, “
Programmable hydrogels
,”
Biomaterials
178
,
663
680
(
2018
).
4.
Correa
,
S.
,
A. K.
Grosskopf
,
H.
Lopez Hernandez
,
D.
Chan
,
A. C.
Yu
,
L. M.
Stapleton
, and
E. A.
Appel
, “
Translational applications of hydrogels
,”
Chem. Rev.
121
,
11385
11457
(
2021
).
5.
Leichner
,
C.
,
M.
Jelkmann
, and
A.
Bernkop-Schnürch
, “
Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature
,”
Adv. Drug Delivery Rev.
151–152
,
191
221
(
2019
).
6.
Kafedjiiski
,
K.
,
R.
Jetti
,
F.
Föger
,
H.
Hoyer
,
M.
Werle
,
M.
Hoffer
, and
A.
Bernkop-Schnürch
, “
Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery
,”
Int. J. Pharm.
343
,
48
58
(
2007
).
7.
Bernkop-Schnürch
,
A.
,
V.
Schwarz
, and
S.
Steininger
, “
Polymers with thiol groups: A new generation of mucoadhesive polymers?
,”
Pharm. Res.
16
,
876
881
(
1999
).
8.
Shu
,
X. Z.
,
Y.
Liu
,
Y.
Luo
,
M. C.
Roberts
, and
G. D.
Prestwich
, “
Disulfide cross-linked hyaluronan hydrogels
,”
Biomacromolecules
3
,
1304
1311
(
2002
).
9.
Bian
,
S.
,
M.
He
,
J.
Sui
,
H.
Cai
,
Y.
Sun
,
J.
Liang
,
Y.
Fan
, and
X.
Zhang
, “
The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture
,”
Colloids Surf. B
140
,
392
402
(
2016
).
10.
Tam
,
N. W.
,
D.
Chung
,
S. J.
Baldwin
,
J. R.
Simmons
,
L.
Xu
,
J. K.
Rainey
,
G.
Dellaire
, and
J. P.
Frampton
, “
Material properties of disulfide-crosslinked hyaluronic acid hydrogels influence prostate cancer cell growth and metabolism
,”
J. Mater. Chem. B
8
,
9718
9733
(
2020
).
11.
Asim
,
M. H.
,
S.
Silberhumer
,
I.
Shahzadi
,
A.
Jalil
,
B.
Matuszczak
, and
A.
Bernkop-Schnürch
, “
S-protected thiolated hyaluronic acid: In-situ crosslinking hydrogels for 3D cell culture scaffold
,”
Carbohydr. Polym.
237
, 116092 (
2020
).
12.
Vanderhooft
,
J. L.
,
M.
Alcoutlabi
,
J. J.
Magda
, and
G. D.
Prestwich
, “
Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering
,”
Macromol. Biosci.
9
,
20
28
(
2009
).
13.
Furst
,
E. M.
, and
T. M.
Squires
, “
Active microrheology
,” in
Microrheology
(Oxford University, Oxford,
2018
).
14.
Cicuta
,
P.
, and
A. M.
Donald
, “
Microrheology: A review of the method and applications
,”
Soft Matter
3
,
1449
1455
(
2007
).
15.
Furst
,
E. M.
, and
T. M.
Squires
, “
Magnetic bead microrheology
,” in
Microrheology
(Oxford University, Oxford,
2018
).
16.
King
,
M.
, and
P. T.
Macklem
, “
Rheological properties of microliter quantities of normal mucus
,”
J. Appl. Physiol.: Respir. Environ. Exercise Physiol.
42
,
797
802
(
1977
).
17.
Lutz
,
R. J.
,
M.
Litt
, and
L. W.
Chakrin
, “
Physical-chemical factors in mucus rheology
,” in
Rheology of Biological Systems
, edited by
H. L.
Gabelnick
and
M.
Litt
(Charles C. Thomas, Springfield, IL,
1973
).
18.
Crick
,
F. H. C.
, “
The physical properties of cytoplasm. A study by means of the magnetic particle method: Part II: Theoretical treatment
,”
Exp. Cell Res.
1
,
505
533
(
1950
).
19.
Sato
,
M.
,
T. Z.
Wong
,
D. T.
Brown
, and
R. D.
Allen
, “
Rheological properties of living cytoplasm: A preliminary investigation of squid axoplasm (Loligo pealei)
,”
Cell Motil.
4
,
7
23
(
1984
).
20.
Bausch
,
A. R.
,
W.
Möller
, and
E.
Sackmann
, “
Measurement of local viscoelasticity and forces in living cells by magnetic tweezers
,”
Biophys. J.
76
,
573
579
(
1999
).
21.
Ziemann
,
F.
,
J.
Rädler
, and
E.
Sackmann
, “
Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer
,”
Biophys. J.
66
,
2210
2216
(
1994
).
22.
Wong
,
I. Y.
,
M. L.
Gardel
,
D. R.
Reichman
,
E. R.
Weeks
,
M. T.
Valentine
,
A. R.
Bausch
, and
D. A.
Weitz
, “
Anomalous diffusion probes microstructure dynamics of entangled F-actin networks
,”
Phys. Rev. Lett.
92
,
178101
(
2004
).
23.
Bausch
,
A. R.
,
F.
Ziemann
,
A. A.
Boulbitch
,
K.
Jacobson
, and
E.
Sackmann
, “
Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry
,”
Biophys. J.
75
,
2038
2049
(
1998
).
24.
Bausch
,
A. R.
,
U.
Hellerer
,
M.
Essler
,
M.
Aepfelbacher
, and
E.
Sackmann
, “
Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: A magnetic bead microrheology study
,”
Biophys. J.
80
,
2649
2657
(
2001
).
25.
Yang
,
Y.
,
J.
Lin
,
R.
Meschewski
,
E.
Watson
, and
M. T.
Valentine
, “
Portable magnetic tweezers device enables visualization of the three-dimensional microscale deformation of soft biological materials
,”
Biotechniques
51
,
29
34
(
2011
).
26.
Berezney
,
J. P.
, and
M. T.
Valentine
, “
A compact rotary magnetic tweezers device for dynamic material analysis
,”
Rev. Sci. Instrum.
93
,
093701
(
2022
).
27.
Brooks
,
C. F.
,
G. G.
Fuller
,
C. W.
Frank
, and
C. R.
Robertson
, “
Interfacial stress rheometer to study rheological transitions in monolayers at the air-water interface
,”
Langmuir
15
,
2450
2459
(
1999
).
28.
Tajuelo
,
J.
,
J. M.
Pastor
,
F.
Martinez-Pedrero
,
M.
Vazquez
,
F.
Ortega
,
R. G.
Rubio
, and
M. A.
Rubio
, “
Magnetic microwire probes for the magnetic Rod interfacial stress rheometer
,”
Langmuir
31
,
1410
1420
(
2015
).
29.
Tajuelo
,
J.
,
J. M.
Pastor
, and
M. A.
Rubio
, “
A magnetic rod interfacial shear rheometer driven by a mobile magnetic trap
,”
J. Rheol.
60
,
1095
1113
(
2016
).
30.
Lee
,
M. H.
,
C. P.
Lapointe
,
D. H.
Reich
,
K. J.
Stebe
, and
R. L.
Leheny
, “
Interfacial hydrodynamic drag on nanowires embedded in thin oil films and protein layers.pdf
,”
Langmuir
25
,
7976
7982
(
2009
).
31.
Rivas
,
D. P.
,
N. D.
Hedgecock
,
K. J.
Stebe
, and
R. L.
Leheny
, “
Dynamic and mechanical evolution of an oil-water interface during bacterial biofilm formation
,”
Soft Matter
17
,
8195
8210
(
2021
).
32.
Martínez-Pedrero
,
F.
,
J.
Tajuelo
,
P.
Sánchez-Puga
,
R.
Chulia-Jordan
,
F.
Ortega
,
M. A.
Rubio
, and
R. G.
Rubio
, “
Linear shear rheological of aging β-casein films adsorbing at the air/water interface
,”
J. Colloid Interface Sci.
511
,
12
20
(
2018
).
33.
Tirado
,
M. M.
, and
J. G.
de la Torre
, “
Translational friction coefficients of rigid, symmetric top macromolecules: Application to circular cylinders
,”
J. Chem. Phys.
71
,
2581
2587
(
1979
).
34.
Jeffrey
,
D. J.
, and
Y.
Onishi
, “
The slow motion of a cylinder next to a plane wall
,”
Q. J. Mech. Appl. Math.
34
,
129
137
(
1981
).
35.
Morrison
,
F. A.
,
Understanding Rheology
(
Oxford University
,
New York
,
2001
).
36.
De Souza Mendes
,
P. R.
,
A. A.
Alicke
, and
R. L.
Thompson
, “
Parallel-plate geometry correction for transient rheometric experiments
,”
Appl. Rheol.
24
,
52721
(
2014
).
37.
Fuji
,
M.
,
H.
Fujimori
,
T.
Takei
,
T.
Watanabe
, and
M.
Chikazawa
, “
Wettability of glass-bead surface modified by trimethylchlorosilane
,”
J. Phys. Chem. B
102
,
10498
10504
(
1998
).
38.
Dunican
,
E. M.
,
B. M.
Elicker
,
D. S.
Gierada
,
S. K.
Nagle
,
M. L.
Schiebler
,
J. D.
Newell
,
W. W.
Raymond
,
M. E.
Lachowicz-Scroggins
,
S.
Di Maio
,
E. A.
Hoffman
,
M.
Castro
,
S. B.
Fain
,
N. N.
Jarjour
,
E.
Israel
,
B. D.
Levy
,
S. C.
Erzurum
,
S. E.
Wenzel
,
D. A.
Meyers
,
E. R.
Bleecker
,
B. R.
Phillips
,
D. T.
Mauger
,
E. D.
Gordon
,
P. G.
Woodruff
,
M. C.
Peters
,
J. V.
Fahy
, “
Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction
,”
J. Clin. Invest.
128
,
997
1009
(
2018
).
39.
Kloxin
,
A.
,
C.
Kloxin
,
C.
Bowman
, and
K.
Anseth
, “
Mechanical properties of cellularly responsive hydrogels and their experimental determination
,”
Adv. Mater.
22
,
3484
3494
(
2010
).
40.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000606 for the supplementary figures discussed throughout the paper.

Supplementary Material

You do not currently have access to this content.