We formulate a particle and force level, activated dynamics-based statistical mechanical theory for the continuous startup nonlinear shear rheology of ultradense glass-forming hard sphere fluids and colloidal suspensions in the context of the elastically collective nonlinear Langevin equation approach and a generalized Maxwell model constitutive equation. Activated structural relaxation is described as a coupled local-nonlocal event involving caging and longer range collective elasticity which controls the characteristic stress relaxation time. Theoretical predictions for the deformation-induced enhancement of mobility, the onset of relaxation acceleration at remarkably low values of stress, strain, or shear rate, apparent power law thinning of the steady-state structural relaxation time and viscosity, a nonvanishing activation barrier in the shear thinning regime, an apparent Herschel–Buckley form of the shear rate dependence of the steady-state shear stress, exponential growth of different measures of a yield or flow stress with packing fraction, and reduced fragility and dynamic heterogeneity under deformation were previously shown to be in good agreement with experiments. The central new question we address here is the defining feature of the transient response—the stress overshoot. In contrast to the steady-state flow regime, understanding the transient response requires an explicit treatment of the coupled nonequilibrium evolution of structure, elastic modulus, and stress relaxation time. We formulate a new quantitative model for this aspect in a physically motivated and computationally tractable manner. Theoretical predictions for the stress overshoot are shown to be in good agreement with experimental observations in the metastable ultradense regime of hard sphere colloidal suspensions as a function of shear rate and packing fraction, and accounting for deformation-assisted activated motion appears to be crucial for both the transient and steady-state responses.

1.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University
,
Cambridge
,
2012
).
2.
Hebert
,
K.
,
B.
Bending
,
J.
Ricci
, and
M. D.
Ediger
, “
Effect of temperature on postyield segmental dynamics of poly(methyl methacrylate) glasses: Thermally activated transitions are important
,”
Macromolecules
48
,
6736
6744
(
2015
).
3.
Berthier
,
L.
, and
G.
Biroli
, “
Theoretical perspective on the glass transition and amorphous materials
,”
Rev. Mod. Phys.
83
,
587
645
(
2011
).
4.
Gratson
,
G. M.
,
M.
Xu
, and
J. A.
Lewis
, “
Microperiodic structures: Direct writing of three-dimensional webs
,”
Nature
428
,
386
(
2004
).
5.
Lee
,
H.-N.
,
K.
Paeng
,
S. F.
Swallen
, and
M. D.
Ediger
, “
Direct measurement of molecular mobility in actively deformed polymer glasses
,”
Science
323
,
231
234
(
2009
).
6.
Eyring
,
H.
, “
Viscosity, plasticity, and diffusion as examples of absolute reaction rates
,”
J. Chem. Phys.
4
,
283
291
(
1936
).
7.
Jadhao
,
V.
, and
M. O.
Robbins
, “
Probing large viscosities in glass-formers with nonequilibrium simulations
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
7952
7957
(
2017
).
8.
Pham
,
K. N.
,
G.
Petekidis
,
D.
Vlassopoulos
,
S. U.
Egelhaaf
,
P. N.
Pusey
, and
W. C. K.
Poon
, “
Yielding of colloidal glasses
,”
Europhys. Lett.
75
,
624
630
(
2006
).
9.
Besseling
,
R.
,
E. R.
Weeks
,
A. B.
Schofield
, and
W. C. K.
Poon
, “
Three-dimensional imaging of colloidal glasses under steady shear
,”
Phys. Rev. Lett.
99
,
028301
(
2007
).
10.
Lee
,
H.-N.
,
R. A.
Riggleman
,
J. J.
de Pablo
, and
M. D.
Ediger
, “
Deformation-induced mobility in polymer glasses during multistep creep experiments and simulations
,”
Macromolecules
42
,
4328
4336
(
2009
).
11.
Koumakis
,
N.
,
A.
Pamvouxoglou
,
A. S.
Poulos
, and
G.
Petekidis
, “
Direct comparison of the rheology of model hard and soft particle glasses
,”
Soft Matter
8
,
4271
–4284 (
2012
).
12.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University
,
New York
,
1999
).
13.
Haward
,
R. N.
, and
R. J.
Young
,
Physics of Glassy Polymers
(
Chapman and Hall
,
London
,
1997
).
14.
Polymer Glasses
, edited by
C. B.
Roth
(
CRC
, Boca Raton,
2016
).
15.
Chen
,
K.
, and
K. S.
Schweizer
, “
Theory of yielding, strain softening, and steady plastic flow in polymer glasses under constant strain rate deformation
,”
Macromolecules
44
,
3988
4000
(
2011
).
16.
Koumakis
,
N.
,
M.
Laurati
,
A. R.
Jacob
,
K. J.
Mutch
,
A.
Abdellali
,
A. B.
Schofield
,
S. U.
Egelhaaf
,
J. F.
Brady
, and
G.
Petekidis
, “
Start-up shear of concentrated colloidal hard spheres: Stresses, dynamics, and structure
,”
J. Rheol.
60
,
603
623
(
2016
).
17.
Koumakis
,
N.
,
M.
Laurati
,
S. U.
Egelhaaf
,
J. F.
Brady
, and
G.
Petekidis
, “
Yielding of hard-sphere glasses during start-up shear
,”
Phys. Rev. Lett.
108
,
098303
(
2012
).
18.
Laurati
,
M.
,
K. J.
Mutch
,
N.
Koumakis
,
J.
Zausch
,
C. P.
Amann
,
A. B.
Schofield
,
G.
Petekidis
,
J. F.
Brady
,
J.
Horbach
,
M.
Fuchs
, and
S. U.
Egelhaaf
, “
Transient dynamics in dense colloidal suspensions under shear: Shear rate dependence
,”
J. Phys.: Condens. Matter
24
,
464104
(
2012
).
19.
Wagner
,
N. J.
, and
J.
Mewis
,
Theory and Applications of Colloidal Suspension Rheology
(
Cambridge University
, Cambridge,
2021
).
20.
Bonnecaze
,
R. T.
, and
J. F.
Brady
, “
Yield stresses in electrorheological fluids
,”
J. Rheol.
36
,
73
115
(
1992
).
21.
Marenne
,
S.
,
J. F.
Morris
,
D. R.
Foss
, and
J. F.
Brady
, “
Unsteady shear flows of colloidal hard-sphere suspensions by dynamic simulation
,”
J. Rheol.
61
,
477
501
(
2017
).
22.
Falk
,
M. L.
, and
J. S.
Langer
, “
Dynamics of viscoplastic deformation in amorphous solids
,”
Phys. Rev. E
57
,
7192
7205
(
1998
).
23.
Demetriou
,
M. D.
,
J. S.
Harmon
,
M.
Tao
,
G.
Duan
,
K.
Samwer
, and
W. L.
Johnson
, “
Cooperative shear model for the rheology of glass-forming metallic liquids
,”
Phys. Rev. Lett.
97
,
065502
(
2006
).
24.
Fuchs
,
M.
, and
M. E.
Cates
, “
Theory of nonlinear rheology and yielding of dense colloidal suspensions
,”
Phys. Rev. Lett.
89
,
248304
(
2002
).
25.
Zaccone
,
A.
, and
E. M.
Terentjev
, “
Rheology of hard glassy materials
,”
J. Phys.: Condens. Matter
32
,
395402
(
2020
).
26.
Zaccone
,
A.
,
P.
Schall
, and
E. M.
Terentjev
, “
Microscopic origin of nonlinear nonaffine deformation in bulk metallic glasses
,”
Phys. Rev. B
90
,
140203(R)
(
2014
).
27.
Langer
,
J.
, “
Shear-transformation-zone theory of deformation in metallic glasses
,”
Scr. Mater.
54
,
375
379
(
2006
).
28.
Cates
,
M. E.
, and
P.
Sollich
, “
Tensorial constitutive models for disordered foams, dense emulsions, and other soft nonergodic materials
,”
J. Rheol.
48
,
193
207
(
2004
).
29.
Benzi
,
R.
,
T.
Divoux
,
C.
Barentin
,
S.
Manneville
,
M.
Sbragaglia
, and
F.
Toschi
, “
Stress overshoots in simple yield stress fluids
,”
Phys. Rev. Lett.
127
,
148003
(
2021
).
30.
Benzi
,
R.
,
T.
Divoux
,
C.
Barentin
,
S.
Manneville
,
M.
Sbragaglia
, and
F.
Toschi
, “
Continuum modeling of shear startup in soft glassy materials
,”
Phys. Rev. E
104
,
034612
(
2021
).
31.
Amann
,
C. P.
,
M.
Siebenbürger
,
M.
Krüger
,
F.
Weysser
,
M.
Ballauff
, and
M.
Fuchs
, “
Overshoots in stress-strain curves: Colloid experiments and schematic mode coupling theory
,”
J. Rheol.
57
,
149
175
(
2013
).
32.
Fuchs
,
M.
, and
M. E.
Cates
, “
Schematic models for dynamic yielding of sheared colloidal glasses
,”
Faraday Discuss.
123
,
267
286
(
2002
).
33.
Fuchs
,
M.
, and
M. E.
Cates
, “
Integration through transients for Brownian particles under steady shear
,”
J. Phys.: Condens. Matter
17
,
S1681
S1696
(
2005
).
34.
Amann
,
C. P.
,
M.
Siebenbürger
,
M.
Ballauff
, and
M.
Fuchs
, “
Nonlinear rheology of glass-forming colloidal dispersions: Transient stress–strain relations from anisotropic mode coupling theory and thermosensitive microgels
,”
J. Phys.: Condens. Matter
27
,
194121
(
2015
).
35.
Götze
,
W.
,
Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory
(
Oxford University
, New York,
2008
).
36.
Miyazaki
,
K.
, and
D. R.
Reichman
, “
Molecular hydrodynamic theory of supercooled liquids and colloidal suspensions under shear
,”
Phys. Rev. E
66
,
050501(R)
(
2002
).
37.
Amann
,
C. P.
, and
M.
Fuchs
, “
Transient stress evolution in repulsion and attraction dominated glasses
,”
J. Rheol.
58
,
1191
1217
(
2014
).
38.
Wisitsorasak
,
A.
, and
P. G.
Wolynes
, “
Dynamical theory of shear bands in structural glasses
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
1287
1292
(
2017
).
39.
Mirigian
,
S.
, and
K. S.
Schweizer
, “
Unified theory of activated relaxation in liquids over 14 decades in time
,”
J. Phys. Chem. Lett.
4
,
3648
3653
(
2013
).
40.
Mirigian
,
S.
, and
K. S.
Schweizer
, “
Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. I. General formulation and application to hard sphere fluids
,”
J. Chem. Phys.
140
,
194506
(
2014
).
41.
Ghosh
,
A.
, and
K. S.
Schweizer
, “
The role of collective elasticity on activated structural relaxation, yielding, and steady state flow in hard sphere fluids and colloidal suspensions under strong deformation
,”
J. Chem. Phys.
153
,
194502
(
2020
).
42.
Watanabe
,
H.
,
M.-L.
Yao
,
K.
Osaki
,
T.
Shikata
,
H.
Niwa
, and
Y.
Morishima
, “
Nonlinear rheology of a concentrated spherical silica suspension
,”
Rheol. Acta
36
,
524
533
(
1997
).
43.
Watanabe
,
H.
,
M.-L.
Yao
,
K.
Osaki
,
T.
Shikata
,
H.
Niwa
,
Y.
Morishima
,
N. P.
Balsara
, and
H.
Wang
, “
Nonlinear rheology and flow-induced structure in a concentrated spherical silica suspension
,”
Rheol. Acta
37
,
1
6
(
1998
).
44.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition
,”
J. Chem. Phys.
117
,
10291
10302
(
2002
).
45.
Sentjabrskaja
,
T.
,
P.
Chaudhuri
,
M.
Hermes
,
W. C. K.
Poon
,
J.
Horbach
,
S. U.
Egelhaaf
, and
M.
Laurati
, “
Creep and flow of glasses: Strain response linked to the spatial distribution of dynamical heterogeneities
,”
Sci. Rep.
5
,
11884
(
2015
).
46.
Kobelev
,
V.
, and
K. S.
Schweizer
, “
Strain softening, yielding, and shear thinning in glassy colloidal suspensions
,”
Phys. Rev. E
71
,
021401
(
2005
).
47.
Hansen
,
J.-P.
, and
I. R.
McDonald
,
Theory of Simple Liquids
(
Elsevier Academic
,
Amsterdam
,
2006
).
48.
Schweizer
,
K. S.
, and
E. J.
Saltzman
, “
Entropic barriers, activated hopping, and the glass transition in colloidal suspensions
,”
J. Chem. Phys.
119
,
1181
1196
(
2003
).
49.
Schweizer
,
K. S.
, “
Derivation of a microscopic theory of barriers and activated hopping transport in glassy liquids and suspensions
,”
J. Chem. Phys.
123
,
244501
(
2005
).
50.
Verberg
,
R.
,
I. M.
de Schepper
, and
E. G. D.
Cohen
, “
Viscosity of colloidal suspensions
,”
Phys. Rev. E
55
,
3143
3158
(
1997
).
51.
Wolynes
,
P. G.
,
V.
Lubchenko
, and
I.
Ebrary
,
Structural Glasses and Supercooled Liquids Theory, Experiment, and Applications
(
Wiley
,
Hoboken, NJ
,
2012
).
52.
Kirkpatrick
,
T. R.
, “
Mode-coupling theory of the glass transition
,”
Phys. Rev. A
31
,
939
944
(
1985
).
53.
Dyre
,
J. C.
, “
Colloquium: The glass transition and elastic models of glass-forming liquids
,”
Rev. Mod. Phys.
78
,
953
972
(
2006
).
54.
Dyre
,
J. C.
, “
Source of non-Arrhenius average relaxation time in glass-forming liquids
,”
J. Non-Cryst. Solids
235-237
,
142
149
(
1998
).
55.
Cohen
,
E. G. D.
,
R.
Verberg
, and
I. M.
de Schepper
, “
Viscosity and diffusion in hard-sphere-like colloidal suspensions
,”
Phys. A: Stat. Mech. Appl.
251
,
251
265
(
1998
).
56.
Nägele
,
G.
, and
J.
Bergenholtz
, “
Linear viscoelasticity of colloidal mixtures
,”
J. Chem. Phys.
108
,
9893
9904
(
1998
).
57.
Miyazaki
,
K.
,
D.
Reichman
, and
R.
Yamamoto
, “
Supercooled liquids under shear: Theory and simulation
,”
Phys. Rev. E
70
,
011501
(
2004
).
58.
Yamamoto
,
R.
, and
A.
Onuki
, “
Dynamics of highly supercooled liquids: Heterogeneity, rheology, and diffusion
,”
Phys. Rev. E
58
,
3515
3529
(
1998
).
59.
We begin to see deviations beyond A=0.3 where the magnitude of the overshoot (steady-state stress) starts to decrease (increase). Eventually for A0.5, the overshoot is almost destroyed.
60.
Hoy
,
R. S.
, and
C. S.
O'Hern
, “
Viscoplasticity and large-scale chain relaxation in glassy-polymeric strain hardening
,”
Phys. Rev. E
82
,
041803
(
2010
).
61.
Bennin
,
T.
,
J.
Ricci
, and
M. D.
Ediger
, “
Enhanced segmental dynamics of poly(lactic acid) glasses during constant strain rate deformation
,”
Macromolecules
52
,
6428
6437
(
2019
).
62.
Bending
,
B.
,
K.
Christison
,
J.
Ricci
, and
M. D.
Ediger
, “
Measurement of segmental mobility during constant strain rate deformation of a poly(methyl methacrylate) glass
,”
Macromolecules
47
,
800
806
(
2014
).
63.
Lee
,
H.-N.
, and
M. D.
Ediger
, “
Interaction between physical aging, deformation, and segmental mobility in poly(methyl methacrylate) glasses
,”
J. Chem. Phys.
133
,
014901
(
2010
).
64.
Pamvouxoglou
,
A.
,
A. B.
Schofield
,
G.
Petekidis
, and
S. U.
Egelhaaf
, “
Stress versus strain controlled shear: Yielding and relaxation of concentrated colloidal suspensions
,”
J. Rheol.
65
,
1219
1233
(
2021
).
65.
Experiments and simulations sometimes employ a “bare” Peclet number Pe0=γ˙τ0, where τ0 is the dilute suspension Brownian time. Many other workers adopt a known short time process time scale (includes local hydrodynamics or binary collisions) that obeys τ0<τsτα. All our theoretical analysis uses this short time Peclet number, Pes=γ˙τs, to display our results.
66.
Besseling
,
R.
,
L.
Isa
,
P.
Ballesta
,
G.
Petekidis
,
M. E.
Cates
, and
W. C. K.
Poon
, “
Shear banding and flow-concentration coupling in colloidal glasses
,”
Phys. Rev. Lett.
105
,
268301
(
2010
).
67.
Using the deformation-dependent structure model, a rescaling constant of ∼15 produces quantitative agreement with experimental data. A detailed discussion of the possible reasons for this factor are given in [35].
68.
Cao
,
C.
,
J.
Liao
,
V.
Breedveld
, and
E. R.
Weeks
, “
Rheology finds distinct glass and jamming transitions in emulsions
,”
Soft Matter
17
,
2587
2595
(
2021
).
69.
Sollich
,
P.
,
F.
Lequeux
,
P.
Hébraud
, and
M. E.
Cates
, “
Rheology of soft glassy materials
,”
Phys. Rev. Lett.
78
,
2020
2023
(
1997
).
70.
Sollich
,
P.
, “
Rheological constitutive equation for a model of soft glassy materials
,”
Phys. Rev. E
58
,
738
759
(
1998
).
71.
Fielding
,
S. M.
,
P.
Sollich
, and
M. E.
Cates
, “
Aging and rheology in soft materials
,”
J. Rheol.
44
,
323
369
(
2000
).
72.
Fielding
,
S. M.
,
M. E.
Cates
, and
P.
Sollich
, “
Shear banding, aging and noise dynamics in soft glassy materials
,”
Soft Matter
5
,
2378
2382
(
2009
).
73.
Rossi
,
S.
,
G.
Biroli
, M. Ozawa, G. Tarjus, and
F.
Zamponi
, “
Finite-disorder critical point in the yielding transition of elastoplastic models
,”
Phys. Rev. Lett.
129
,
228002
(
2022
).
74.
Maestro
,
A.
, and
A.
Zaccone
, “
Nonaffine deformation and tunable yielding of colloidal assemblies at the Air–water interface
,”
Nanoscale
9
,
18343
18351
(
2017
).
75.
Bocquet
,
L.
,
A.
Colin
, and
A.
Ajdari
, “
Kinetic theory of plastic flow in soft glassy materials
,”
Phys. Rev. Lett.
103
,
036001
(
2009
).
76.
Benzi
,
R.
,
T.
Divoux
,
C.
Barentin
,
S.
Manneville
,
M.
Sbragaglia
, and
F.
Toschi
, “
Unified theoretical and experimental view on transient shear banding
,”
Phys. Rev. Lett.
123
,
248001
(
2019
).
77.
Jacob
,
A. R.
,
E.
Moghimi
, and
G.
Petekidis
, “
Rheological signatures of aging in hard sphere colloidal glasses
,”
Phys. Fluids
31
,
087103
(
2019
).
78.
Carrier
,
V.
, and
G.
Petekidis
, “
Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles
,”
J. Rheol.
53
,
245
273
(
2009
).
79.
Pham
,
K. N.
,
G.
Petekidis
,
D.
Vlassopoulos
,
S. U.
Egelhaaf
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Yielding behavior of repulsion- and attraction-dominated colloidal glasses
,”
J. Rheol.
52
,
649
676
(
2008
).
80.
Khabaz
,
F.
,
B. F.
Di Dio
,
M.
Cloitre
, and
R. T.
Bonnecaze
, “
Transient dynamics of soft particle glasses in startup shear flow: Part I: Microstructure and time scales
,”
J. Rheol.
65
,
241
255
(
2021
).
81.
Ghosh
,
A.
,
G.
Chaudhary
,
J. G.
Kang
,
P. V.
Braun
,
R. H.
Ewoldt
, and
K. S.
Schweizer
, “
Linear and nonlinear rheology and structural relaxation in dense glassy and jammed soft repulsive microgel suspensions
,”
Soft Matter
15
,
1038
1052
(
2019
).
82.
Mohanty
,
P. S.
,
S.
Nöjd
,
K.
van Gruijthuijsen
,
J. J.
Crassous
,
M.
Obiols-Rabasa
,
R.
Schweins
,
A.
Stradner
, and
P.
Schurtenberger
, “
Interpenetration of polymeric microgels at ultrahigh densities
,”
Sci. Rep.
7
,
1487
(
2017
).
83.
Ghosh
,
A.
, and
K. S.
Schweizer
, “
Microscopic theory of the influence of strong attractive forces on the activated dynamics of dense glass and Gel forming fluids
,”
J. Chem. Phys.
151
,
244502
(
2019
).
84.
Fritschi
,
S.
,
M.
Fuchs
, and
T.
Voigtmann
, “
Mode-coupling analysis of residual stresses in colloidal glasses
,”
Soft Matter
10
,
4822
4832
(
2014
).
85.
Ballauff
,
M.
,
J. M.
Brader
,
S. U.
Egelhaaf
,
M.
Fuchs
,
J.
Horbach
,
N.
Koumakis
,
M.
Krüger
,
M.
Laurati
,
K. J.
Mutch
,
G.
Petekidis
,
M.
Siebenbürger
,
T.
Voigtmann
, and
J.
Zausch
, “
Residual stresses in glasses
,”
Phys. Rev. Lett.
110
,
215701
(
2013
).
86.
Chen
,
K.
,
K. S.
Schweizer
,
R.
Stamm
,
E.
Lee
, and
J. M.
Caruthers
, “
Theory of nonlinear creep in polymer glasses
,”
J. Chem. Phys.
129
,
184904
(
2008
).
87.
Chen
,
K.
, and
K. S.
Schweizer
, “
Microscopic constitutive equation theory for the nonlinear mechanical response of polymer glasses
,”
Macromolecules
41
,
5908
5918
(
2008
).
88.
Nabizadeh
,
M.
, and
S.
Jamali
, “
Life and death of colloidal bonds control the rate-dependent rheology of gels
,”
Nat. Commun.
12
,
4274
(
2021
).
89.
Nakayama
,
Y.
, and
R.
Yamamoto
, “
Simulation method to resolve hydrodynamic interactions in colloidal dispersions
,”
Phys. Rev. E
71
,
036707
(
2005
).
90.
Whittle
,
M.
, and
E.
Dickinson
, “
Stress overshoot in a model particle gel
,”
J. Chem. Phys.
107
,
10191
10200
(
1997
).
91.
Singh
,
A.
,
C.
Ness
,
R.
Seto
,
J. J.
de Pablo
, and
H. M.
Jaeger
, “
Shear thickening and jamming of dense suspensions: The ‘roll’ of friction
,”
Phys. Rev. Lett.
124
,
248005
(
2020
).
92.
Fuchs
,
R.
,
T.
Weinhart
,
J.
Meyer
,
H.
Zhuang
,
T.
Staedler
,
X.
Jiang
, and
S.
Luding
, “
Rolling, sliding and torsion of micron-sized silica particles: Experimental, numerical and theoretical analysis
,”
Granular Matter
16
,
281
297
(
2014
).
93.
Fernandez
,
N.
,
R.
Mani
,
D.
Rinaldi
,
D.
Kadau
,
M.
Mosquet
,
H.
Lombois-Burger
,
J.
Cayer-Barrioz
,
H. J.
Herrmann
,
N. D.
Spencer
, and
L.
Isa
, “
Microscopic mechanism for shear thickening of non-Brownian suspensions
,”
Phys. Rev. Lett.
111
,
108301
(
2013
).
94.
Wyart
,
M.
, and
M. E
Cates
, “
Discontinuous shear thickening without inertia in dense non-Brownian suspensions
,”
Phys. Rev. Lett.
112
,
098302
(
2014
).
You do not currently have access to this content.