We formulate a particle and force level, activated dynamics-based statistical mechanical theory for the continuous startup nonlinear shear rheology of ultradense glass-forming hard sphere fluids and colloidal suspensions in the context of the elastically collective nonlinear Langevin equation approach and a generalized Maxwell model constitutive equation. Activated structural relaxation is described as a coupled local-nonlocal event involving caging and longer range collective elasticity which controls the characteristic stress relaxation time. Theoretical predictions for the deformation-induced enhancement of mobility, the onset of relaxation acceleration at remarkably low values of stress, strain, or shear rate, apparent power law thinning of the steady-state structural relaxation time and viscosity, a nonvanishing activation barrier in the shear thinning regime, an apparent Herschel–Buckley form of the shear rate dependence of the steady-state shear stress, exponential growth of different measures of a yield or flow stress with packing fraction, and reduced fragility and dynamic heterogeneity under deformation were previously shown to be in good agreement with experiments. The central new question we address here is the defining feature of the transient response—the stress overshoot. In contrast to the steady-state flow regime, understanding the transient response requires an explicit treatment of the coupled nonequilibrium evolution of structure, elastic modulus, and stress relaxation time. We formulate a new quantitative model for this aspect in a physically motivated and computationally tractable manner. Theoretical predictions for the stress overshoot are shown to be in good agreement with experimental observations in the metastable ultradense regime of hard sphere colloidal suspensions as a function of shear rate and packing fraction, and accounting for deformation-assisted activated motion appears to be crucial for both the transient and steady-state responses.
Skip Nav Destination
Microscopic activated dynamics theory of the shear rheology and stress overshoot in ultradense glass-forming fluids and colloidal suspensions
Article navigation
March 2023
Research Article|
March 01 2023
Microscopic activated dynamics theory of the shear rheology and stress overshoot in ultradense glass-forming fluids and colloidal suspensions
Ashesh Ghosh
;
Ashesh Ghosh
a)
1
Department of Chemistry, University of Illinois at Urbana-Champaign
, IL 618012
Materials Research Laboratory, University of Illinois at Urbana-Champaign
, IL 61801
Search for other works by this author on:
Kenneth S. Schweizer
Kenneth S. Schweizer
b)
1
Department of Chemistry, University of Illinois at Urbana-Champaign
, IL 618012
Materials Research Laboratory, University of Illinois at Urbana-Champaign
, IL 618013
Department of Materials Science, University of Illinois at Urbana-Champaign
, IL 618014
Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign
, IL 61801
Search for other works by this author on:
a)
Present address: Department of Chemical Engineering, Stanford University, CA 94305
b)
Electronic mail: kschweiz@illinois.edu
J. Rheol. 67, 559–578 (2023)
Article history
Received:
August 06 2022
Accepted:
January 26 2023
Citation
Ashesh Ghosh, Kenneth S. Schweizer; Microscopic activated dynamics theory of the shear rheology and stress overshoot in ultradense glass-forming fluids and colloidal suspensions. J. Rheol. 1 March 2023; 67 (2): 559–578. https://doi.org/10.1122/8.0000546
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
259
Views
Citing articles via
Related Content
Start-up shear of concentrated colloidal hard spheres: Stresses, dynamics, and structure
Journal of Rheology (July 2016)
Effect of masker level on overshoot
J Acoust Soc Am (August 1990)
On the frequency regions governing overshoot
J Acoust Soc Am (August 2005)
Effects of age and hearing loss on overshoot
J. Acoust. Soc. Am. (October 2016)
Overshoot in magnetic bubble translation
AIP Conference Proceedings (May 1976)