The rheology of concentrated suspensions of particles is complex and typically exhibits a shear-thickening behavior in the case of repulsive interactions. Despite the recent interest arisen, the causes of the shear-thickening remain unclear. Frictional contacts have been able to explain the discontinuous shear thickening in simulations. However, the interparticle friction coefficient is considered to be constant in most simulations and theoretical works reported to date despite the fact that tribological experiments demonstrate that the friction coefficient can not only be constant (boundary regime) but also decrease (mixed regime) or even increase (full-film lubrication regime), depending on the normal force and the relative velocity between the particles and the interstitial liquid between them. Interestingly, the transition between the boundary regime and the full-lubrication regime is governed by the particle average roughness. Particle-level simulations of suspensions of hard spheres were carried out using short-range lubrication and roughness-dependent frictional forces describing the full Stribeck curve. Suspensions with different particle’s roughness were simulated to show that the particle roughness is a key factor in the shear-thickening behavior; for sufficiently rough particles, the suspension exhibits a remarkable shear-thickening, while for sufficiently smooth particles, the discontinuous shear-thickening disappears.

1.
Kawasaki
,
T.
,
A.
Ikeda
, and
L.
Berthier
, “
Thinning or thickening? Multiple rheological regimes in dense suspensions of soft particles
,”
Europhys. Lett.
107
,
28009
(
2014
).
2.
Brady
,
J. F.
, and
G.
Bossis
, “
The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation
,”
J. Fluid Mech.
155
,
105
129
(
1985
).
3.
Hoffman
,
R. L.
, “
Explanations for the cause of shear thickening in concentrated colloidal suspensions
,”
J. Rheol. (N. Y. N. Y).
42
,
111
123
(
1998
).
4.
Melrose
,
J. R.
, and
R. C.
Ball
, “
‘Contact networks’ in continuously shear thickening colloids
,”
J. Rheol.
48
,
961
978
(
2004
).
5.
Wyart
,
M.
, and
M. E.
Cates
, “
Discontinuous shear thickening without inertia in dense non-Brownian suspensions
,”
Phys. Rev. Lett.
112
,
098302
(
2014
).
6.
Guy
,
B. E.
,
M.
Hermes
, and
W. E.
Poon
, “
Towards a unified description of the rheology of hard-particle suspensions
,”
Phys. Rev. Lett.
115
,
088304
(
2015
).
7.
Hermes
,
M.
,
B. M.
Guy
,
W. C. K.
Poon
,
G.
Poy
,
M. E.
Cates
, and
M.
Wyart
, “
Unsteady flow and particle migration in dense, non-Brownian suspensions
,”
J. Rheol.
60
,
905
916
(
2016
).
8.
Lin
,
N. Y.
,
B. M.
Guy
,
M.
Hermes
,
C.
Ness
,
J.
Sun
,
W. C.
Poon
, and
I.
Cohen
, “
Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions
,”
Phys. Rev. Lett.
115
,
228304
(
2015
).
9.
Krieger
,
I. M.
, and
T. J.
Dougherty
, “
A mechanism for non-Newtonian flow in suspensions of rigid spheres
,”
Trans. Soc. Rheol.
3
,
137
152
(
1959
).
10.
Brown
,
E.
, and
H. M.
Jaeger
, “
Dynamic jamming point for shear thickening suspensions
,”
Phys. Rev. Lett.
103
,
086001
(
2009
).
11.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions
,”
J. Rheol.
58
,
1693
1724
(
2014
).
12.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University
,
Cambridge
,
2011
).
13.
Wagner
,
N. J.
,
L.
Krishnamurthy
, and
J.
Mewis
, “
Shear thickening in polymer stabilized colloidal dispersions
,”
J. Rheol.
49
,
1347
1360
(
2005
).
14.
Kaldasch
,
J.
, and
B.
Senge
, “
Shear thickening in polymer stabilized colloidal suspensions
,”
Colloid Polym. Sci.
287
,
1481
1485
(
2009
).
15.
Seto
,
R.
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
,
218301
(
2013
).
16.
Cwalina
,
C. D.
, and
N. J.
Wagner
, “
Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions
,”
J. Rheol.
58
,
949
967
(
2014
).
17.
Jamali
,
S.
, and
J. F.
Brady
, “
Alternative frictional model for discontinuous shear thickening of dense suspensions: Hydrodynamics
,”
Phys. Rev. Lett.
123
,
138002
(
2019
).
18.
Royer
,
J. R.
,
D. L.
Blair
, and
S. D.
Hudson
, “
Rheological signature of frictional interactions in shear thickening suspensions
,”
Phys. Rev. Lett.
116
,
188301
(
2016
).
19.
Foss
,
D. R.
, and
J. F.
Brady
, “
Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation
,”
J. Fluid Mech.
407
,
167
200
(
2000
).
20.
Seto
,
R.
, and
G. G.
Giusteri
, “
Normal stress differences in dense suspensions
,”
J. Fluid Mech.
857
,
200
215
(
2018
).
21.
Ness
,
C.
, and
J.
Sun
, “
Two-scale evolution during shear reversal in dense suspensions
,”
Phys. Rev. E
93
,
012604
(
2016
).
22.
Cheal
,
O.
, and
C.
Ness
, “
Rheology of dense granular suspensions under extensional flow
,”
J. Rheol.
62
,
501
512
(
2018
).
23.
Singh
,
A.
,
S.
Pednekar
,
J.
Chun
,
M. M.
Denn
, and
J. F.
Morris
, “
From yielding to shear jamming in a cohesive frictional suspension
,”
Phys. Rev. Lett.
122
,
098004
(
2019
).
24.
Singh
,
A.
,
C.
Ness
,
R.
Seto
,
J. J. D.
Pablo
, and
H. M.
Jaeger
, “
Shear thickening and jamming of dense suspensions: The roll of friction
,”
Phys. Rev. Lett.
124
,
248005
(
2020
).
25.
Wang
,
M.
,
S.
Jamali
, and
J. F.
Brady
, “
A hydrodynamic model for discontinuous shear-thickening in dense suspensions
,”
J. Rheol.
64
,
379
394
(
2020
).
26.
Xu
,
Q.
,
A.
Singh
, and
H. M.
Jaeger
, “
Stress fluctuations and shear thickening in dense granular suspensions
,”
J. Rheol.
64
,
321
328
(
2020
).
27.
de Vicente
,
J.
,
J. R.
Stokes
, and
H. A.
Spikes
, “
The frictional properties of newtonian fluids in rolling-sliding soft-EHL contact
,”
Tribol. Lett.
20
,
273
286
(
2005
).
28.
Hamrock
,
B. J.
,
S. R.
Schmid
, and
B. O.
Jacobson
,
Fundamentals of Fluid Film Lubrication
(
Marcel Dekker
,
New York
,
2004
), p.
699
.
29.
Arshad
,
M.
,
A.
Maali
,
C.
Claudet
,
L.
Lobry
,
F.
Peters
, and
E.
Lemaire
, “
An experimental study on the role of inter-particle friction in the shear-thinning behavior of non-Brownian suspensions
,”
Soft Matter
17
,
6088
6097
(
2021
).
30.
Chatté
,
G.
,
J.
Comtet
,
A.
Niguès
,
L.
Bocquet
,
A.
Siria
,
G.
Ducouret
,
F.
Lequeux
,
N.
Lenoir
,
G.
Ovarlez
, and
A.
Colin
, “
Shear thinning in non-Brownian suspensions
,”
Soft Matter
14
,
879
893
(
2018
).
31.
Fernandez
,
N.
,
R.
Mani
,
D.
Rinaldi
,
D.
Kadau
,
M.
Mosquet
,
H.
Lombois-Burger
,
J.
Cayer-Barrioz
,
H. J.
Herrmann
,
N. D.
Spencer
, and
L.
Isa
, “
Microscopic mechanism for shear thickening of non-Brownian suspensions
,”
Phys. Rev. Lett.
111
,
108301
(
2013
).
32.
Bongaerts
,
J. H.
,
K.
Fourtouni
, and
J. R.
Stokes
, “
Soft-tribology: Lubrication in a compliant PDMS-PDMS contact
,”
Tribol. Int.
40
,
1531
1542
(
2007
).
33.
Gallier
,
S.
,
E.
Lemaire
,
F.
Peters
, and
L.
Lobry
, “
Rheology of sheared suspensions of rough frictional particles
,”
J. Fluid Mech.
757
,
514
549
(
2014
).
34.
Lobry
,
L.
,
E.
Lemaire
,
F.
Blanc
,
S.
Gallier
, and
F.
Peters
, “
Shear thinning in non-Brownian suspensions explained by variable friction between particles
,”
J. Fluid Mech.
860
,
682
710
(
2019
).
35.
Brizmer
,
V.
,
Y.
Kligerman
, and
I.
Etsion
, “
Elastic-plastic spherical contact under combined normal and tangential loading in full stick
,”
Tribol. Lett.
25
,
61
70
(
2006
).
36.
More
,
R. V.
, and
A. M.
Ardekani
, “
Unifying disparate rate-dependent rheological regimes in non-Brownian suspensions
,”
Phys. Rev. E
103
,
062610
(
2021
).
37.
Jeffrey
,
D. J.
, and
Y.
Onishi
, “
Calculations of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds number flow
,”
J. Fluid Mech.
139
,
261
290
(
1984
).
38.
Kumar
,
S. S. P.
,
A.
Vázquez-Quesada
, and
M.
Ellero
, “
A conservative lubrication dynamics method for the simulation of dense non-colloidal suspensions with particle spin
,”
J. Comput. Phys.
427
,
110001
(
2021
).
39.
Kim
,
S.
, and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(Dover Publications Inc., Mineola, New York,
1991
), p.
507
.
40.
Vázquez-Quesada
,
A.
,
R. I.
Tanner
, and
M.
Ellero
, “
Shear thinning of noncolloidal suspensions
,”
Phys. Rev. Lett.
117
,
108001
(
2016
).
41.
Vázquez-Quesada
,
A.
,
P.
Español
, and
M.
Ellero
, “
Apparent slip mechanism between two spheres based on solvent rheology: Theory and implication for the shear thinning of non-Brownian suspensions
,”
Phys. Rev. Fluids
3
,
123302
(
2018
).
42.
Richards
,
J. A.
,
B. M.
Guy
,
E.
Blanco
,
M.
Hermes
,
G.
Poy
, and
W. C. K.
Poon
, “
The role of friction in the yielding of adhesive non-Brownian suspensions
,”
J. Rheol.
64
,
405
412
(
2020
).
43.
Jamali
,
S.
,
A.
Boromand
,
N.
Wagner
, and
J.
Maia
, “
Microstructure and rheology of soft to rigid shear-thickening colloidal suspensions
,”
J. Rheol.
59
,
1377
1395
(
2015
).
You do not currently have access to this content.