Oscillatory rheometric techniques such as small amplitude oscillatory shear (SAOS) and, more recently, medium amplitude oscillatory shear and large amplitude oscillatory shear (LAOS) are widely used for rheological characterization of the viscoelastic properties of complex fluids. However, in a time-evolving or mutating material, the build-up or breakdown of microstructure is commonly both time- and shear-rate (or shear-stress) dependent, and thixotropic phenomena are observed in many complex fluids including drilling fluids, biopolymer gels, and many food products. Conventional applications of Fourier transforms for analyzing oscillatory data assume the signals are time-translation invariant, which constrains the mutation number of the material to be extremely small. This constraint makes it difficult to accurately study shear-induced microstructural changes in thixotropic and gelling materials, and it is becoming increasingly important to develop more advanced signal processing techniques capable of robustly extracting time-resolved frequency information from oscillatory data. In this work, we explore applications of the Gabor transform (a short-time Fourier transform combined with a Gaussian window), for providing optimal joint time-frequency resolution of a mutating material’s viscoelastic properties. First, we show using simple analytic models and measurements on a bentonite clay that the Gabor transform enables us to accurately measure rapid changes in both the storage and/or loss modulus with time as well as extract a characteristic thixotropic/aging time scale for the material. Second, using the Gabor transform we demonstrate the extraction of useful viscoelastic data from the initial transient response following the inception of oscillatory flow. Finally, we consider extension of the Gabor transform to nonlinear oscillatory deformations using an amplitude-modulated input strain signal, in order to track the evolution of the Fourier–Tschebyshev coefficients of thixotropic fluids at a specified deformation frequency. We refer to the resulting test protocol as Gaborheometry (Gabor-transformed oscillatory shear rheometry). This unconventional, but easily implemented, rheometric approach facilitates both SAOS and LAOS studies of time-evolving materials, reducing the number of required experiments and the data postprocessing time significantly.

1.
Daugman
,
J. G.
, “
Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression
,”
IEEE Trans. Acoust., Speech., Signal. Process.
36
,
1169
1179
(
1988
).
2.
Donoho
,
D. L.
,
M.
Vetterli
,
R. A.
DeVore
, and
I.
Daubechies
, “
Data compression and harmonic analysis
,”
IEEE Trans. Inf. Theory
44
,
2435
2476
(
1998
).
3.
Feichtinger
,
H. G.
, and
T.
Strohmer
,
Gabor Analysis and Algorithms: Theory and Applications
(
Springer Science & Business Media
,
New York
,
2012
).
4.
Hansen
,
F. K.
,
K. M.
Gorski
, and
E.
Hivon
, “
Gabor transforms on the sphere with applications to CMB power spectrum estimation
,”
Mon. Not. R. Astron. Soc.
336
,
1304
1328
(
2002
).
5.
Yao
,
J.
,
P.
Krolak
, and
C.
Steele
, “
The generalized Gabor transform
,”
IEEE Trans. Image Process.
4
,
978
988
(
1995
).
6.
Lahmiri
,
S.
, and
M.
Boukadoum
, “
Hybrid discrete wavelet transform and Gabor filter banks processing for features extraction from biomedical images
,”
J. Med. Eng.
2013
,
104684
(
2013
).
7.
Suzuki
,
H.
,
T.
Kinjo
,
Y.
Hayashi
,
M.
Takemoto
, and
K.
Ono
, “
Wavelet transform of acoustic emission signals
,”
Journal of Acoustic Emission
14
,
69
84
(
1996
).
8.
Ewoldt
,
R. H.
, “
Defining nonlinear rheological material functions for oscillatory shear
,”
J. Rheol.
57
(
1
),
177
195
(
2013
).
9.
Ewoldt
,
R. H.
,
P.
Winter
,
J.
Maxey
, and
G. H.
McKinley
, “
Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials
,”
Rheol. Acta
49
,
191
212
(
2010
).
10.
Ewoldt
,
R. H.
, and
N. A.
Bharadwaj
, “
Low-dimensional intrinsic material functions for nonlinear viscoelasticity
,”
Rheol. Acta
52
(
3
),
201
219
(
2013
).
11.
Ewoldt
,
R. H.
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
1458
(
2008
).
12.
Ewoldt
,
R. H.
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
Nonlinear viscoelastic biomaterials: Meaningful characterization and engineering inspiration
,”
Integr. Comp. Biol.
49
,
40
50
(
2009
).
13.
Ewoldt
,
R. H.
,
C.
Clasen
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion
,”
Soft Matter
3
,
634
643
(
2007
).
14.
Dimitriou
,
C. J.
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)
,”
J. Rheol.
57
,
27
70
(
2013
).
15.
Ng
,
T. S. K.
,
G. H.
McKinley
, and
R. H.
Ewoldt
, “
Large amplitude oscillatory shear flow of gluten dough: A model power-law gel
,”
J. Rheol.
55
,
627
654
(
2011
).
16.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
17.
Singh
,
P. K.
,
J. M.
Soulages
, and
R. H.
Ewoldt
, “
Frequency-sweep medium-amplitude oscillatory shear (MAOS)
,”
J. Rheol.
62
,
277
293
(
2017
).
18.
Martinetti
,
L.
, and
R. H.
Ewoldt
, “
Time-strain separability in medium-amplitude oscillatory shear
,”
Phys. Fluids
31
(
2
),
021213
(
2019
).
19.
Rogers
,
S. A.
,
B. M.
Erwin
,
D.
Vlassopoulos
, and
M.
Cloitre
, “
A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid
,”
J. Rheol.
55
(
2
),
435
458
(
2011
).
20.
Erturk
,
M. Y.
,
S. A.
Rogers
, and
J.
Kokini
, “
Comparison of sequence of physical processes (SPP) and fourier transform coupled with Chebyshev polynomials (FTC) methods to interpret large amplitude oscillatory shear (LAOS) response of viscoelastic doughs and viscous pectin solution
,”
Food Hydrocolloids
128
,
107558
(
2022
).
21.
Lennon
,
K. R.
,
G. H.
McKinley
, and
J. W.
Swan
, “
Medium amplitude parallel superposition (MAPS) rheology. Part 1: Mathematical framework and theoretical examples
,”
J. Rheol.
64
(
3
),
551
579
(
2020
).
22.
Lennon
,
K. R.
,
M.
Geri
,
G. H.
McKinley
, and
J. W.
Swan
, “
Medium amplitude parallel superposition (MAPS) rheology. Part 2: Experimental protocols and data analysis
,”
J. Rheol.
64
,
1263
1293
(
2020
).
23.
Rathinaraj
,
J. D. J.
,
G. H.
McKinley
, and
B.
Keshavarz
, “
Incorporating rheological nonlinearity into fractional calculus descriptions of fractal matter and multi-scale complex fluids
,”
Fractal Fractional
5
(
4
),
174
(
2021
).
24.
Jaishankar
,
A.
, and
G. H.
McKinley
, “
A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids
,”
J. Rheol.
58
,
1751
1788
(
2014
).
25.
Holten-Andersen
,
N.
,
M. J.
Harrington
,
H.
Birkedal
,
B. P.
Lee
,
P. B.
Messersmith
,
K. Y. C.
Lee
, and
J. H.
Waite
, “
pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
2651
2655
(
2011
).
26.
Li
,
H.
,
P.
Yang
,
P.
Pageni
, and
C.
Tang
, “
Recent advances in metal-containing polymer hydrogels
,”
Macromol. Rapid Commun.
38
(
14
),
1700109
(
2017
).
27.
Mewis
,
J.
, “
Thixotropy—A general review
,”
J. Non-Newtonian Fluid Mech.
6
,
1
20
(
1979
).
28.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147–148
,
214
227
(
2009
).
29.
Larson
,
R. G.
, and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
,
477
501
(
2019
).
30.
Dullaert
,
K.
, and
J.
Mewis
, “
Thixotropy: Build-up and breakdown curves during flow
,”
J. Rheol.
49
,
1213
1230
(
2005
).
31.
Joshi
,
Y. M.
, and
G. R. K.
Reddy
, “
Aging in a colloidal glass in creep flow: Time-stress superposition
,”
Phys. Rev. E
77
,
021501
(
2008
).
32.
Joshi
,
Y. M.
, “
Dynamics of colloidal glasses and gels
,”
Annu. Rev. Chem. Biomol. Eng.
5
(
1
),
181
202
(
2014
).
33.
Joshi
,
Y. M.
,
G. K.
Reddy
,
A. L.
Kulkarni
,
N.
Kumar
, and
R. P.
Chhabra
, “
Rheological behaviour of aqueous suspensions of laponite: New insights into the ageing phenomena
,”
Proc. R. Soc. A.
464
,
469
489
(
2008
).
34.
Awasthi
,
V.
, and
Y. M.
Joshi
, “
Effect of temperature on aging and time-temperature superposition in nonergodic laponite suspensions
,”
Soft Matter
5
(
24
),
4991
4996
(
2009
).
35.
Baldewa
,
B.
, and
Y. M.
Joshi
, “
Thixotropy and physical aging in acrylic emulsion paint
,”
Polym. Eng. Sci.
51
(
10
),
2085
2092
(
2011
).
36.
Kaushal
,
M.
, and
Y. M.
Joshi
, “
Linear viscoelasticity of soft glassy materials
,”
Soft Matter
10
(
12
),
1891
1894
(
2014
).
37.
Shahin
,
A.
, and
Y. M.
Joshi
, “
Hyper-aging dynamics of nanoclay suspension
,”
Langmuir
28
,
5826
5833
(
2012
).
38.
Shahin
,
A.
, and
Y. M.
Joshi
, “
Irreversible aging dynamics and generic phase behavior of aqueous suspensions of laponite
,”
Langmuir
26
,
4219
4225
(
2010
).
39.
Shahin
,
A.
, and
Y. M.
Joshi
, “
Physicochemical effects in aging aqueous laponite suspensions
,”
Langmuir
28
,
15674
15686
(
2012
).
40.
Shahin
,
A.
, and
Y. M.
Joshi
, “
Prediction of long and short time rheological behavior in soft glassy materials
,”
Phys. Rev. Lett.
106
,
038302
(
2011
).
41.
Shukla
,
A.
,
S.
Shanbhag
, and
Y. M.
Joshi
, “
Analysis of linear viscoelasticity of aging soft glasses
,”
J. Rheol.
64
,
1197
1207
(
2020
).
42.
Agarwal
,
M.
, and
Y. M.
Joshi
, “
Signatures of physical aging and thixotropy in aqueous dispersion of Carbopol
,”
Phys. Fluids
31
,
063107
(
2019
).
43.
Bandyopadhyay
,
R.
,
P.
Harsha Mohan
, and
Y. M.
Joshi
, “
Stress relaxation in aging soft colloidal glasses
,”
Soft Matter
6
(
7
),
1462
1466
(
2010
).
44.
Gupta
,
R.
,
B.
Baldewa
, and
Y. M.
Joshi
, “
Time temperature superposition in soft glassy materials
,”
Soft Matter
8
(
15
),
4171
4176
(
2012
).
45.
Mours
,
M.
, and
H. H.
Winter
, “
Time-resolved rheometry
,”
Rheol. Acta
33
(
5
),
385
397
(
1994
).
46.
Curtis
,
D. J.
,
A.
Holder
,
N.
Badiei
,
J.
Claypole
,
M.
Walters
,
B.
Thomas
,
M.
Barrow
,
D.
Deganello
,
M. R.
Brown
,
P. R.
Williams
, and
K.
Hawkins
, “
Validation of optimal fourier rheometry for rapidly gelling materials and its application in the study of collagen gelation
,”
J. Non-Newtonian Fluid Mech.
222
,
253
259
(
2015
).
47.
Coussot
,
P.
,
H.
Tabuteau
,
X.
Chateau
,
L.
Tocquer
, and
G.
Ovarlez
, “
Aging and solid or liquid behavior in pastes
,”
J. Rheol.
50
,
975
994
(
2006
).
48.
Winter
,
H. H.
, and
F.
Chambon
, “
Analysis of linear viscoelasticity of a crosslinking polymer at the gel point
,”
J. Rheol.
30
,
367
382
(
1986
).
49.
Geri
,
M.
,
B.
Keshavarz
,
T.
Divoux
,
C.
Clasen
,
D. J.
Curtis
, and
G. H.
McKinley
, “
Time-resolved mechanical spectroscopy of soft materials via optimally windowed chirps
,”
Phys. Rev. X
8
,
041042
(
2018
).
50.
Bouzid
,
M.
,
B.
Keshavarz
,
M.
Geri
,
T.
Divoux
,
E.
Del Gado
, and
G. H.
McKinley
, “
Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol
,”
J. Rheol.
62
,
1037
1050
(
2018
).
51.
Ghiringhelli
,
E.
,
D.
Roux
,
D.
Bleses
,
H.
Galliard
, and
F.
Caton
, “
Optimal fourier rheometry: Application to the gelation of an alginate
,”
Rheol. Acta
51
,
413
420
(
2012
).
52.
Rathinaraj
,
J. D. J.
,
J.
Hendricks
,
G. H.
McKinley
, and
C.
Clasen
, “
Orthochirp: A fast spectro-mechanical probe for monitoring transient microstructural evolution of complex fluids during shear
,”
J. Non-Newtonian Fluid Mech.
301
,
104744
(
2022
).
53.
Keshavarz
,
B.
,
D. G.
Rodrigues
,
J.-B.
Champenois
,
M. G.
Frith
,
J.
Ilavsky
,
M.
Geri
,
T.
Divoux
,
G. H.
McKinley
, and
A.
Poulesquen
, “
Time–connectivity superposition and the gel/glass duality of weak colloidal gels
,”
Proc. Natl. Acad. Sci. U.S.A.
118
(
15
),
e2022339118
(
2021
).
54.
Tassieri
,
M.
,
M.
Laurati
,
D. J.
Curtis
,
D. W.
Auhl
,
S.
Coppola
,
A.
Scalfati
,
K.
Hawkins
,
P. R.
Williams
, and
J. M.
Cooper
, “
i-Rheo: Measuring the materials’ linear viscoelastic properties ‘in a step’!
,”
J. Rheol.
60
(
4
),
649
660
(
2016
).
55.
Wang
,
F.-W.
,
M.
Geri
,
Y.-J.
Chen
,
J.-R.
Huang
,
G. H.
McKinley
, and
Y.-L.
Chen
, “
Rheo-chemistry of gelation in aiyu (fig) jelly
,”
Food Hydrocolloids
123
,
107001
(
2022
).
56.
Gabor
,
D.
, “
Theory of communication. Part 1: The analysis of information
,”
J. Inst. of Electr. Eng.,-Part III
93
(
26
),
429
441
(
1946
).
57.
Capus
,
C.
, and
K.
Brown
, “
Short-time fractional Fourier methods for the time-frequency representation of chirp signals
,”
J. Acoust. Soc. Am.
113
(
6
),
3253
3263
(
2003
).
58.
Kutz
,
J. N.
,
Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data
(
Oxford University Press
,
Oxford
,
2013
).
59.
Brunton
,
S. L.
, and
J. N.
Kutz
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
(
Cambridge University Press
,
Cambridge
,
2019
).
60.
Bird
,
R. B.
, and
A. J.
Giacomin
, “
Who conceived the ‘complex viscosity’?
,”
Rheol. Acta
51
(
6
),
481
486
(
2012
).
61.
Smith
,
J. O.
,
Mathematics of the Discrete Fourier Transform (DFT): With Audio Applications
(BookSurge, Charleston,
2007
).
62.
Sejdić
,
E.
,
I.
Djurović
, and
J.
Jiang
, “
Time–frequency feature representation using energy concentration: An overview of recent advances
,”
Digital Signal Process.
19
(
1
),
153
183
(
2009
).
63.
Brandt
,
A.
,
Noise and Vibration Analysis: Signal Analysis and Experimental Procedures
(
John Wiley & Sons
,
Chichester
,
2011
).
64.
van Dusschoten
,
D.
, and
M.
Wilhelm
, “
Increased torque transducer sensitivity via oversampling
,”
Rheol. Acta
40
(
4
),
395
399
(
2001
).
65.
Lee
,
J. C.-W.
,
Y.-T.
Hong
,
K. M.
Weigandt
,
E. G.
Kelley
,
H.
Kong
, and
S. A.
Rogers
, “
Strain shifts under stress-controlled oscillatory shearing in theoretical, experimental, and structural perspectives: Application to probing zero-shear viscosity
,”
J. Rheol.
63
,
863
881
(
2019
).
66.
Hassager
,
O.
, “
Stress-controlled oscillatory flow initiated at time zero: A linear viscoelastic analysis
,”
J. Rheol.
64
,
545
550
(
2020
).
67.
Wagner
,
M. H.
, and
J.
Meissner
, “
Network disentanglement and time-dependent flow behaviour of polymer melts
,”
Die Makromolekulare Chemie
181
(
7
),
1533
1550
(
1980
).
68.
Rathinaraj
,
J. D. J.
,
B.
Keshavarz
, and
G. H.
McKinley
, “
Why the Cox–Merz rule and Gleissle mirror relation work: A quantitative analysis using the Wagner integral framework with a fractional Maxwell kernel
,”
Phys. Fluids
34
(
3
),
033106
(
2022
).
You do not currently have access to this content.