Thixotropy is a phenomenon related to time dependent change in viscosity in the presence or absence of flow. The yield stress, on the other hand, represents the minimum value of stress above which steady flow can be sustained. In addition, the yield stress of a material may also change as a function of time. Both these characteristic features in a material strongly influence the steady state flow curve of the same. This study aims to understand the interrelation between thixotropy, yield stress, and their relation with the flow curve. In this regard, we study five thixotropic materials that show yield stress. The relaxation time of all the five systems shows power-law dependence on aging time with behaviors ranging from weaker than linear, linear to stronger than linear. Furthermore, the elastic modulus and yield stress have been observed to be constant for some systems while time dependent for the others. We also analyze the experimental behavior through a viscoelastic thixotropic structural kinetic model that predicts the observed experimental behavior of constant as well as time-dependent yield stress quite well. These findings indicate that a nonmonotonic steady-state flow curve in a structural kinetic formalism necessarily leads to time-dependent yield stress, while constant yield stress is predicted by a monotonic steady-state flow curve with stress plateau in the limit of low shear rates. The present work, therefore, shows that thixotropic materials may exhibit either monotonic or nonmonotonic flow curves. Consequently, thixotropic materials may show no yield stress, constant yield stress, or time-dependent yield stress.

1.
Hunter
,
G. L.
, and
E. R.
Weeks
, “
The physics of the colloidal glass transition
,”
Rep. Prog. Phys.
75
,
066501
(
2012
).
2.
Joshi
,
Y. M.
, “
Dynamics of colloidal glasses and gels
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
181
202
(
2014
).
3.
Petekidis
,
G.
, and
N. J.
Wagner
, “
Rheology of colloidal glasses and gels
,” in
Theory and Applications of Colloidal Suspension Rheology
, edited by
J.
Mewis
and
N. J.
Wagner
(
Cambridge University
,
Cambridge
,
2021
).
4.
Fielding
,
S. M.
,
P.
Sollich
, and
M. E.
Cates
, “
Aging and rheology in soft materials
,”
J. Rheol.
44
,
323
369
(
2000
).
5.
McKenna
,
G. B.
,
T.
Narita
, and
F.
Lequeux
, “
Soft colloidal matter: A phenomenological comparison of the aging and mechanical responses with those of molecular glasses
,”
J. Rheol.
53
,
489
516
(
2009
).
6.
Joshi
,
Y. M.
, “
A model for aging under deformation field, residual stresses and strains in soft glassy materials
,”
Soft Matter
11
,
3198
3214
(
2015
).
7.
Struik
,
L. C. E.
,
Physical Aging in Amorphous Polymers and Other Materials
(
Elsevier
,
Houston
,
1978
).
8.
Kovacs
,
A. J.
,
J. J.
Aklonis
,
J. M.
Hutchinson
, and
A. R.
Ramos
, “
Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory
,”
J. Polym. Sci. Polym. Phys. Ed.
17
,
1097
1162
(
1979
).
9.
Sollich
,
P.
,
F.
Lequeux
,
P.
Hébraud
, and
M. E.
Cates
, “
Rheology of soft glassy materials
,”
Phys. Rev. Lett.
78
,
2020
2023
(
1997
).
10.
Choi
,
J.
,
M.
Armstrong
, and
S. A.
Rogers
, “
The role of elasticity in thixotropy: Transient elastic stress during stepwise reduction in shear rate
,”
Phys. Fluids
33
,
033112
(
2021
).
11.
Rubio-Hernández
,
F. J.
,
J. H.
Sánchez-Toro
, and
N. M.
Páez-Flor
, “
Testing shear thinning/thixotropy and shear thickening/antithixotropy relationships in a fumed silica suspension
,”
J. Rheol.
64
,
785
797
(
2020
).
12.
Coussot
,
P.
, and
S. A.
Rogers
, “
Oldroyd's model and the foundation of modern rheology of yield stress fluids
,”
J. Non-Newtonian Fluid Mech.
295
,
104604
(
2021
).
13.
Wang
,
Y.
, and
R. H.
Ewoldt
, “
New insights on carbon black suspension rheology—Anisotropic thixotropy and antithixotropy
,”
J. Rheol.
66
,
937
953
(
2022
).
14.
Jamali
,
S.
, and
G. H.
McKinley
, “
The mnemosyne number and the rheology of remembrance
,”
J. Rheol.
66
,
1027
1039
(
2022
).
15.
Armstrong
,
M.
,
A.
Pincot
,
S.
Jariwala
,
J.
Horner
,
N.
Wagner
, and
A.
Beris
, “
Tensorial formulations for improved thixotropic viscoelastic modeling of human blood
,”
J. Rheol.
66
,
327
347
(
2022
).
16.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147-148
,
214
227
(
2009
).
17.
Agarwal
,
M.
,
S.
Sharma
,
V.
Shankar
, and
Y. M.
Joshi
, “
Distinguishing thixotropy from viscoelasticity
,”
J. Rheol.
65
,
663
680
(
2021
).
18.
Shaukat
,
A.
,
A.
Sharma
, and
Y. M.
Joshi
, “
Squeeze flow behavior of (soft glassy) thixotropic material
,”
J. Non-Newtonian Fluid Mech.
167-168
,
9
17
(
2012
).
19.
Negi
,
A. S.
, and
C. O.
Osuji
, “
Time-resolved viscoelastic properties during structural arrest and aging of a colloidal glass
,”
Phys. Rev. E
82
,
031404
(
2010
).
20.
Barnes
,
H. A.
, “
The yield stress—A review or ‘παντα ρει’—everything flows?
,”
J. Non-Newtonian Fluid Mech.
81
,
133
178
(
1999
).
21.
Moorcroft
,
R. L.
,
M. E.
Cates
, and
S. M.
Fielding
, “
Age-dependent transient shear banding in soft glasses
,”
Phys. Rev. Lett.
106
,
055502
(
2011
).
22.
Vasu
,
K. S.
,
R.
Krishnaswamy
,
S.
Sampath
, and
A. K.
Sood
, “
Yield stress, thixotropy and shear banding in a dilute aqueous suspension of few layer graphene oxide platelets
,”
Soft Matter
9
,
5874
5882
(
2013
).
23.
Paredes
,
J.
,
N.
Shahidzadeh-Bonn
, and
D.
Bonn
, “
Shear banding in thixotropic and normal emulsions
,”
J. Phys.: Condens. Matter
23
,
284116
(
2011
).
24.
Martin
,
J. D.
, and
Y.
Thomas Hu
, “
Transient and steady-state shear banding in aging soft glassy materials
,”
Soft Matter
8
,
6940
6949
(
2012
).
25.
Besseling
,
R.
,
L.
Isa
,
P.
Ballesta
,
G.
Petekidis
,
M. E.
Cates
, and
W. C. K.
Poon
, “
Shear banding and flow-concentration coupling in colloidal glasses
,”
Phys. Rev. Lett.
105
,
268301
(
2010
).
26.
Coussot
,
P.
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Viscosity bifurcation in thixotropic, yielding fluids
,”
J. Rheol.
46
,
573
589
(
2002
).
27.
Da Cruz
,
F.
,
F.
Chevoir
,
D.
Bonn
, and
P.
Coussot
, “
Viscosity bifurcation in granular materials, foams, and emulsions
,”
Phys. Rev. E
66
,
051305
(
2002
).
28.
Coussot
,
P.
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Avalanche behavior in yield stress fluids
,”
Phys. Rev. Lett.
88
,
175501
(
2002
).
29.
Agarwal
,
M.
,
M.
Kaushal
, and
Y. M.
Joshi
, “
Signatures of overaging in an aqueous dispersion of carbopol
,”
Langmuir
36
,
14849
14863
(
2020
).
30.
Bandyopadhyay
,
R.
,
P. H.
Mohan
, and
Y. M.
Joshi
, “
Stress relaxation in aging soft colloidal glasses
,”
Soft Matter
6
,
1462
1466
(
2010
).
31.
Viasnoff
,
V.
,
S.
Jurine
, and
F.
Lequeux
, “
How are colloidal suspensions that age rejuvenated by strain application?
,”
Faraday Discuss.
123
,
253
266
(
2003
).
32.
Viasnoff
,
V.
, and
F.
Lequeux
, “
Rejuvenation and overaging in a colloidal glass under shear
,”
Phys. Rev. Lett.
89
,
065701
(
2002
).
33.
Landrum
,
B. J.
,
W. B.
Russel
, and
R. N.
Zia
, “
Delayed yield in colloidal gels: Creep, flow, and re-entrant solid regimes
,”
J. Rheol.
60
,
783
807
(
2016
).
34.
Baldewa
,
B.
, and
Y. M.
Joshi
, “
Delayed yielding in creep, time–stress superposition and effective time theory for a soft glass
,”
Soft Matter
8
,
789
796
(
2012
).
35.
Sprakel
,
J.
,
S. B.
Lindström
,
T. E.
Kodger
, and
D. A.
Weitz
, “
Stress enhancement in the delayed yielding of colloidal gels
,”
Phys. Rev. Lett.
106
,
248303
(
2011
).
36.
Moghimi
,
E.
,
A. B.
Schofield
, and
G.
Petekidis
, “
Yielding and resolidification of colloidal gels under constant stress
,”
J. Phys.: Condens. Matter
33
,
284002
(
2021
).
37.
Joshi
,
Y. M.
,
A.
Shahin
, and
M. E.
Cates
, “
Delayed solidification of soft glasses: New experiments, and a theoretical challenge
,”
Faraday Discuss.
158
,
313
324
(
2012
).
38.
Shukla
,
A.
, and
Y. M.
Joshi
, “
Ageing under oscillatory stress: Role of energy barrier distribution in thixotropic materials
,”
Chem. Eng. Sci.
64
,
4668
4674
(
2009
).
39.
Ballauff
,
M.
,
J. M.
Brader
,
S. U.
Egelhaaf
,
M.
Fuchs
,
J.
Horbach
,
N.
Koumakis
,
M.
Krüger
,
M.
Laurati
,
K. J.
Mutch
,
G.
Petekidis
,
M.
Siebenbürger
,
T.
Voigtmann
, and
J.
Zausch
, “
Residual stresses in glasses
,”
Phys. Rev. Lett.
110
,
215701
(
2013
).
40.
Moghimi
,
E.
,
A. R.
Jacob
, and
G.
Petekidis
, “
Residual stresses in colloidal gels
,”
Soft Matter
13
,
7824
7833
(
2017
).
41.
Mohan
,
L.
,
M.
Cloitre
, and
R. T.
Bonnecaze
, “
Build-up and two-step relaxation of internal stress in jammed suspensions
,”
J. Rheol.
59
,
63
84
(
2015
).
42.
Negi
,
A. S.
, and
C. O.
Osuji
, “
Physical aging and relaxation of residual stresses in a colloidal glass following flow cessation
,”
J. Rheol.
54
,
943
958
(
2010
).
43.
Larson
,
R. G.
, “
Constitutive equations for thixotropic fluids
,”
J. Rheol.
59
,
595
611
(
2015
).
44.
Larson
,
R. G.
, and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
,
477
501
(
2019
).
45.
Cipelletti
,
L.
, and
L.
Ramos
, “
Slow dynamics in glassy soft matter
,”
J. Phys.: Condens. Matter
17
,
R253
R285
(
2005
).
46.
Joshi
,
Y. M.
, and
G.
Petekidis
, “
Yield stress fluids and ageing
,”
Rheol. Acta
57
,
521
549
(
2018
).
47.
Møller
,
P. C. F.
,
A.
Fall
, and
D.
Bonn
, “
Origin of apparent viscosity in yield stress fluids below yielding
,”
EPL
87
,
38004
(
2009
).
48.
Métivier
,
C.
,
C.
Li
, and
A.
Magnin
, “
Origin of the onset of Rayleigh-Bénard convection in a concentrated suspension of microgels with a yield stress behavior
,”
Phys. Fluids
29
,
104102
(
2017
).
49.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
Wiley
,
New York
,
1987
), Vol.
1
.
50.
Koumakis
,
N.
, and
G.
Petekidis
, “
Two step yielding in attractive colloids: Transition from gels to attractive glasses
,”
Soft Matter
7
,
2456
2470
(
2011
).
51.
Koumakis
,
N.
,
E.
Moghimi
,
R.
Besseling
,
W. C. K.
Poon
,
J. F.
Brady
, and
G.
Petekidis
, “
Tuning colloidal gels by shear
,”
Soft Matter
11
,
4640
4648
(
2015
).
52.
Koumakis
,
N.
,
A. B.
Schofield
, and
G.
Petekidis
, “
Effects of shear induced crystallization on the rheology and ageing of hard sphere glasses
,”
Soft Matter
4
,
2008
2018
(
2008
).
53.
Dhavale
,
T. P.
,
S.
Jatav
, and
Y. M.
Joshi
, “
Thermally activated asymmetric structural recovery in a soft glassy nano-clay suspension
,”
Soft Matter
9
,
7751
7756
(
2013
).
54.
Coussot
,
P.
,
H.
Tabuteau
,
X.
Chateau
,
L.
Tocquer
, and
G.
Ovarlez
, “
Aging and solid or liquid behavior in pastes
,”
J. Rheol.
50
,
975
994
(
2006
).
55.
Ballesta
,
P.
, and
G.
Petekidis
, “
Creep and aging of hard-sphere glasses under constant stress
,”
Phys. Rev. E
93
,
042613
(
2016
).
56.
Derec
,
C.
,
G.
Ducouret
,
A.
Ajdari
, and
F.
Lequeux
, “
Aging and nonlinear rheology in suspensions of polyethylene oxide-protected silica particles
,”
Phys. Rev. E
67
,
061403
(
2003
).
57.
Shahin
,
A.
, and
Y. M.
Joshi
, “
Prediction of long and short time rheological behavior in soft glassy materials
,”
Phys. Rev. Lett.
106
,
038302
(
2011
).
58.
Agarwal
,
M.
, and
Y. M.
Joshi
, “
Signatures of physical aging and thixotropy in aqueous dispersion of carbopol
,”
Phys. Fluids
31
,
063107
(
2019
).
59.
Gupta
,
R.
,
B.
Baldewa
, and
Y. M.
Joshi
, “
Time temperature superposition in soft glassy materials
,”
Soft Matter
8
,
4171
4176
(
2012
).
60.
Shahin
,
A.
, and
Y. M.
Joshi
, “
Hyper-aging dynamics of nanoclay suspension
,”
Langmuir
28
,
5826
5833
(
2012
).
61.
Kaushal
,
M.
, and
Y. M.
Joshi
, “
Validation of effective time translational invariance and linear viscoelasticity of polymer undergoing cross-linking reaction
,”
Macromolecules
47
,
8041
8047
(
2014
).
62.
Kaushal
,
M.
, and
Y. M.
Joshi
, “
Linear viscoelasticity of soft glassy materials
,”
Soft Matter
10
,
1891
1894
(
2014
).
63.
Joshi
,
Y. M.
, and
G. R. K.
Reddy
, “
Aging in a colloidal glass in creep flow: Time-stress superposition
,”
Phys. Rev. E
77
,
021501
(
2008
).
64.
Cloitre
,
M.
,
R.
Borrega
, and
L.
Leibler
, “
Rheological aging and rejuvenation in microgel pastes
,”
Phys. Rev. Lett.
85
,
4819
4822
(
2000
).
65.
Cipelletti
,
L.
,
S.
Manley
,
R. C.
Ball
, and
D. A.
Weitz
, “
Universal aging features in the restructuring of fractal colloidal gels
,”
Phys. Rev. Lett.
84
,
2275
2278
(
2000
).
66.
Abou
,
B.
,
D.
Bonn
, and
J.
Meunier
, “
Aging dynamics in a colloidal glass
,”
Phys. Rev. E
64
,
021510
(
2001
).
67.
Kaloun
,
S.
,
R.
Skouri
,
M.
Skouri
,
J. P.
Munch
, and
F.
Schosseler
, “
Successive exponential and full aging regimes evidenced by tracer diffusion in a colloidal glass
,”
Phys. Rev. E
72
,
011403
(
2005
).
68.
Chalk
,
S.
, “
UPAC compendium of chemical terminology-the gold book
,” in
Book IUPAC Compendium of Chemical Terminology—The Gold Book
(
International Union of Pure and Applied Chemistry, Zurich
,
2019
).
69.
Parisi
,
D.
,
M.
Camargo
,
K.
Makri
,
M.
Gauthier
,
C. N.
Likos
, and
D.
Vlassopoulos
, “
Effect of softness on glass melting and re-entrant solidification in mixtures of soft and hard colloids
,”
J. Chem. Phys.
155
,
034901
(
2021
).
70.
Marzi
,
D.
,
B.
Capone
,
J.
Marakis
,
M. C.
Merola
,
D.
Truzzolillo
,
L.
Cipelletti
,
F.
Moingeon
,
M.
Gauthier
,
D.
Vlassopoulos
,
C. N.
Likos
, and
M.
Camargo
, “
Depletion, melting and reentrant solidification in mixtures of soft and hard colloids
,”
Soft Matter
11
,
8296
8312
(
2015
).
71.
Moore
,
F.
, “
The rheology of ceramic slip and bodies
,”
Trans. Brit. Ceram. Soc.
58
,
470
492
(
1959
).
72.
Nguyen
,
Q. D.
, and
D. V.
Boger
, “
Thixotropic behaviour of concentrated bauxite residue suspensions
,”
Rheol. Acta
24
,
427
437
(
1985
).
73.
Dimitriou
,
C. J.
, and
G. H.
McKinley
, “
A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid
,”
Soft Matter
10
,
6619
6644
(
2014
).
74.
Ewoldt
,
R. H.
, and
G. H.
McKinley
, “
Mapping thixo-elasto-visco-plastic behavior
,”
Rheol. Acta
56
,
195
210
(
2017
).
75.
Jamali
,
S.
,
G. H.
McKinley
, and
R. C.
Armstrong
, “
Microstructural rearrangements and their rheological implications in a model thixotropic elastoviscoplastic fluid
,”
Phys. Rev. Lett.
118
,
048003
(
2017
).
76.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
A multimode structural kinetics constitutive equation for the transient rheology of thixotropic elasto-viscoplastic fluids
,”
J. Rheol.
62
,
321
342
(
2018
).
77.
Moller
,
P.
,
A.
Fall
,
V.
Chikkadi
,
D.
Derks
, and
D.
Bonn
, “
An attempt to categorize yield stress fluid behaviour
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
367
,
5139
5155
(
2009
).
78.
Bonn
,
D.
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
035005
(
2017
).
79.
Suman
,
K.
, and
Y. M.
Joshi
, “
Microstructure and soft glassy dynamics of an aqueous laponite dispersion
,”
Langmuir
34
,
13079
13103
(
2018
).
80.
Shahin
,
A.
, and
Y. M.
Joshi
, “
Irreversible aging dynamics and generic phase behavior of aqueous suspensions of laponite
,”
Langmuir
26
,
4219
4225
(
2010
).
81.
Pham
,
K. N.
,
G.
Petekidis
,
D.
Vlassopoulos
,
S. U.
Egelhaaf
,
P. N.
Pusey
, and
W. C. K.
Poon
, “
Yielding of colloidal glasses
,”
Europhys. Lett.
75
,
624
630
(
2006
).
82.
Pham
,
K. N.
,
G.
Petekidis
,
D.
Vlassopoulos
,
S. U.
Egelhaaf
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Yielding behavior of repulsion- and attraction-dominated colloidal glasses
,”
J. Rheol.
52
,
649
676
(
2008
).
83.
Koumakis
,
N.
,
A.
Pamvouxoglou
,
A. S.
Poulos
, and
G.
Petekidis
, “
Direct comparison of the rheology of model hard and soft particle glasses
,”
Soft Matter
8
,
4271
4284
(
2012
).
84.
Apostolidis
,
A. J.
,
M. J.
Armstrong
, and
A. N.
Beris
, “
Modeling of human blood rheology in transient shear flows
,”
J. Rheol.
59
,
275
298
(
2015
).
85.
Joshi
,
Y. M.
, “
Thixotropy, nonmonotonic stress relaxation, and the second law of thermodynamics
,”
J. Rheol.
66
,
111
123
(
2022
).
86.
Dullaert
,
K.
, and
J.
Mewis
, “
A structural kinetics model for thixotropy
,”
J. Non-Newtonian Fluid Mech.
139
,
21
30
(
2006
).
87.
Horner
,
J. S.
,
M. J.
Armstrong
,
N. J.
Wagner
, and
A. N.
Beris
, “
Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear
,”
J. Rheol.
62
,
577
591
(
2018
).
88.
Armstrong
,
M.
, and
J.
Tussing
, “
A methodology for adding thixotropy to oldroyd-8 family of viscoelastic models for characterization of human blood
,”
Phys. Fluids
32
,
094111
(
2020
).
89.
Jariwala
,
S.
,
J. S.
Horner
,
N. J.
Wagner
, and
A. N.
Beris
, “
Application of population balance-based thixotropic model to human blood
,”
J. Non-Newtonian Fluid Mech.
281
,
104294
(
2020
).
90.
Jacob
,
A. R.
,
E.
Moghimi
, and
G.
Petekidis
, “
Rheological signatures of aging in hard sphere colloidal glasses
,”
Phys. Fluids
31
,
087103
(
2019
).
91.
Dinkgreve
,
M.
,
J.
Paredes
,
M. M.
Denn
, and
D.
Bonn
, “
On different ways of measuring ‘the’ yield stress
,”
J. Non-Newtonian Fluid Mech.
238
,
233
241
(
2016
).
92.
Sharma
,
S.
,
V.
Shankar
, and
Y. M.
Joshi
, “
Onset of transient shear banding in viscoelastic shear start-up flows: Implications from linearized dynamics
,”
J. Rheol.
65
,
1391
1412
(
2021
).
93.
Ovarlez
,
G.
,
S.
Rodts
,
X.
Chateau
, and
P.
Coussot
, “
Phenomenology and physical origin of shear localization and shear banding in complex fluids
,”
Rheol. Acta
48
,
831
844
(
2009
).
94.
Christopoulou
,
C.
,
G.
Petekidis
,
B.
Erwin
,
M.
Cloitre
, and
D.
Vlassopoulos
, “
Ageing and yield behaviour in model soft colloidal glasses
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
367
,
5051
5071
(
2009
).
95.
Joshi
,
Y. M.
,
G. R. K.
Reddy
,
A. L.
Kulkarni
,
N.
Kumar
, and
R. P.
Chhabra
, “
Rheological behaviour of aqueous suspensions of laponite: New insights into the ageing phenomena
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
464
,
469
489
(
2008
).
96.
Baravian
,
C.
, and
D.
Quemada
, “
Using instrumental inertia in controlled stress rheometry
,”
Rheol. Acta
37
,
223
233
(
1998
).
97.
Shukla
,
A.
,
S.
Shanbhag
, and
Y. M.
Joshi
, “
Analysis of linear viscoelasticity of aging soft glasses
,”
J. Rheol.
64
,
1197
1207
(
2020
).
98.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
Letter to the editor: Modeling the nonmonotonic time-dependence of viscosity bifurcation in thixotropic yield-stress fluids
,”
J. Rheol.
63
,
673
675
(
2019
).
99.
Jain
,
A.
,
R.
Singh
,
L.
Kushwaha
,
V.
Shankar
, and
Y. M.
Joshi
, “
Role of inertia and thixotropy in start-up flows of aging soft materials: Transient dynamics and shear banding in a rate-controlled flow field
,”
J. Rheol.
62
,
1001
1016
(
2018
).
100.
Kushwaha
,
L.
,
V.
Shankar
, and
Y. M.
Joshi
, “
Dynamics and shear banding in stress-controlled start-up shear flow of a model aging soft materials: The role of inertia and thixotropy
,”
Rheol. Acta
61
,
355
371
(
2022
).
101.
Ballesta
,
P.
,
G.
Petekidis
,
L.
Isa
,
W. C. K.
Poon
, and
R.
Besseling
, “
Wall slip and flow of concentrated hard-sphere colloidal suspensions
,”
J. Rheol.
56
,
1005
1037
(
2012
).
102.
Sharma
,
S.
,
V.
Shankar
, and
Y. M.
Joshi
, “
Viscoelasticity and rheological hysteresis
,”
J. Rheol.
67
,
139
155
(
2023
).
103.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000558 for additional data on yield stress measurement and creep measurements. Particularly, we plot strain amplitude versus stress amplitude curves for all five systems leading to an alternate method of yield stress estimation. Subsequently, we show inertial creep ringing and a method of obtaining modulus from the same. Finally, we plot creep curves at different stresses and waiting times for the two clay dispersions and demonstrate creep time–aging time superpositions, if any, for the same at different stresses.

Supplementary Material

You do not currently have access to this content.