We examine the impact of confinement on the structure, dynamics, and rheology of spherically confined macromolecular suspensions, with a focus on the role played by entropic forces, by comparing the limits of strong hydrodynamics and no hydrodynamics. We present novel measurements of the osmotic pressure, intrinsic viscosity, and long-time self-diffusivity in spherical confinement and find confinement induces strong structural correlations and restrictions on configurational entropy that drive up osmotic pressure and viscosity and drive down self-diffusion. Even in the absence of hydrodynamics, confinement produces distinct short-time and long-time self-diffusion regimes. This finding revises the previous understanding that short-time self-diffusion is a purely hydrodynamic quantity. The entropic short-time self-diffusion is proportional to an entropic mobility, a direct analog to the hydrodynamic mobility. A caging plateau following the short-time regime is stronger and more durable without hydrodynamics, and entropic drift—a gradient in volume fraction—drives particles out of their cages. The distinct long-time regime emerges when an entropic mobility gradient arising from heterogeneous distribution of particle volume drives particles out of local cages. We conclude that entropic mobility gradients produce a distinct long-time dynamical regime in confinement and that hydrodynamic interactions weaken this effect. From a statistical physics perspective, confinement restricts configurational entropy, driving up confined osmotic pressure, viscosity, and (inverse) long-time dynamics as confinement tightens. We support this claim by rescaling the volume fraction as the distance from confinement-dependent maximum packing, which collapses the data for each rheological measure onto a single curve.

1.
Tolić-Nørrelykke
,
I. M.
,
E. L.
Munteanu
,
G.
Thon
,
L.
Oddershede
, and
K.
Berg-Sørensen
, “
Anomalous diffusion in living yeast cells
,”
Phys. Rev. Lett.
93
,
078102
(
2004
).
2.
Banks
,
D. S.
, and
C.
Fradin
, “
Anomalous diffusion of proteins due to molecular crowding
,”
Biophys. J.
89
,
2960
2971
(
2005
).
3.
Weber
,
S. C.
,
A. J.
Spakowitz
, and
J. A.
Theriot
, “
Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm
,”
Phys. Rev. Lett.
104
,
238102
(
2010
).
4.
Guo
,
M.
,
A. J.
Ehrlicher
,
M. H.
Jensen
,
M.
Renz
,
J. R.
Moore
,
R. D.
Goldman
,
J.
Lippincott-Schwartz
,
F. C.
Mackintosh
, and
D. A.
Weitz
, “
Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy
,”
Cell
158
,
822
832
(
2014
).
5.
Stylianidou
,
S.
,
N. J.
Kuwada
, and
P. A.
Wiggins
, “
Cytoplasmic dynamics reveals two modes of nucleoid-dependent mobility
,”
Biophys. J.
107
,
2684
2692
(
2015
).
6.
Reverey
,
J. F.
,
J. H.
Jeon
,
H.
Bao
,
M.
Leippe
,
R.
Metzler
, and
C.
Selhuber-Unkel
, “
Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii
,”
Sci. Rep.
5
,
1
14
(
2015
).
7.
Sabri
,
A.
,
X.
Xu
,
D.
Krapf
, and
M.
Weiss
, “
Elucidating the origin of heterogeneous anomalous diffusion in the cytoplasm of mammalian cells
,”
Phys. Rev. Lett.
125
,
058101
(
2020
).
8.
Maheshwari
,
A. J.
,
A. M.
Sunol
,
E.
Gonzalez
,
D.
Endy
, and
R. N.
Zia
, “
Colloidal hydrodynamics of biological cells: A frontier spanning two fields
,”
Phys. Rev. Fluids
4
,
1
26
(
2019
).
9.
Maheshwari
,
A. J.
,
A. M.
Sunol
,
E.
Gonzalez
,
D.
Endy
, and
R. N.
Zia
, “Colloidal physics modeling reveals how per-ribosome productivity increases with growth rate in
Escherichia coli
,” mBio (2022).
10.
Perham
,
R. N.
, “
Self-assembly of biological macromolecules
,”
Philos. Trans. R. Soc. London, Ser. B
272
,
123
136
(
1975
).
11.
Gao
,
Y.
,
J.
Shi
,
D.
Yuan
, and
B.
Xu
, “
Imaging enzyme-triggered self-assembly of small molecules inside live cells
,”
Nat. Commun.
3
,
1033
(
2012
).
12.
Marsh
,
J. A.
, and
S. A.
Teichmann
, “
Structure, dynamics, assembly, and evolution of protein complexes
,”
Annu. Rev. Biochem.
84
,
551
575
(
2015
).
13.
Hyman
,
A. A.
,
C. A.
Weber
, and
F.
Jülicher
, “
Liquid-liquid phase separation in biology
,”
Annu. Rev. Cell Dev. Biol.
30
,
39
58
(
2014
).
14.
Brangwynne
,
C. P.
,
P.
Tompa
, and
R. V.
Pappu
, “
Polymer physics of intracellular phase transitions
,”
Nat. Phys.
11
,
899
904
(
2015
).
15.
Konopka
,
M. C.
,
I. A.
Shkel
,
S.
Cayley
,
M. T.
Record
, and
J. C.
Weisshaar
, “
Crowding and confinement effects on protein diffusion in vivo
,”
J. Bacteriol.
188
,
6115
6123
(
2006
).
16.
Pinot
,
M.
,
F.
Chesnel
,
J. Z.
Kubiak
,
I.
Arnal
,
F. J.
Nedelec
, and
Z.
Gueroui
, “
Effects of confinement on the self-organization of microtubules and motors
,”
Curr. Biol.
19
,
954
960
(
2009
).
17.
Mika
,
J. T.
, and
B.
Poolman
, “
Macromolecule diffusion and confinement in prokaryotic cells
,”
Curr. Opin. Biotechnol.
22
,
117
126
(
2011
).
18.
Guo
,
M.
,
A. F.
Pegoraro
,
A.
Mao
,
E. H.
Zhou
,
P. R.
Arany
,
Y.
Han
,
D. T.
Burnette
,
M. H.
Jensen
,
K. E.
Kasza
,
J. R.
Moore
,
F. C.
Mackintosh
,
J. J.
Fredberg
,
D. J.
Mooney
,
J.
Lippincott-Schwartz
, and
D. A.
Weitz
, “
Cell volume change through water efflux impacts cell stiffness and stem cell fate
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
E8618
E8627
(
2017
).
19.
Yang
,
Y. S. S.
,
K. D.
Moynihan
,
A.
Bekdemir
,
T. M.
Dichwalkar
,
M. M.
Noh
,
N.
Watson
,
M.
Melo
,
J.
Ingram
,
H.
Suh
,
H.
Ploegh
,
F. R.
Stellacci
, and
D. J.
Irvine
, “
Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles
,”
Biomater. Sci.
7
,
113
124
(
2019
).
20.
Li
,
W.
,
L.
Zhang
,
X.
Ge
,
B.
Xu
,
W.
Zhang
,
L.
Qu
,
C. H.
Choi
,
J.
Xu
,
A.
Zhang
,
H.
Lee
, and
D. A.
Weitz
, “
Microfluidic fabrication of microparticles for biomedical applications
,”
Chem. Soc. Rev.
47
,
5646
5683
(
2018
).
21.
Schieferstein
,
J. M.
,
P.
Reichert
,
C. N.
Narasimhan
,
X.
Yang
, and
P. S.
Doyle
, “
Hydrogel microsphere encapsulation enhances the flow properties of monoclonal antibody crystal formulations
,”
Adv. Ther.
4
,
2000216
(
2021
).
22.
Vaughan
,
E.
,
J.
DeGiulio
, and
D.
Dean
, “
Intracellular trafficking of plasmids for gene therapy: Mechanisms of cytoplasmic movement and nuclear import
,”
Curr. Gene Ther.
6
,
671
681
(
2006
).
23.
Lenshof
,
A.
, and
T.
Laurell
, “
Continuous separation of cells and particles in microfluidic systems
,”
Chem. Soc. Rev.
39
,
1203
1217
(
2010
).
24.
Galliker
,
P.
,
J.
Schneider
,
H.
Eghlidi
,
S.
Kress
,
V.
Sandoghdar
, and
D.
Poulikakos
, “
Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets
,”
Nat. Commun.
3
,
890
(
2012
).
25.
Bansal
,
L.
,
S.
Basu
, and
S.
Chakraborty
, “
Confinement suppresses instabilities in particle-laden droplets
,”
Sci. Rep.
7
,
1
8
(
2017
).
26.
Shang
,
L.
,
Y.
Cheng
, and
Y.
Zhao
, “
Emerging droplet microfluidics
,”
Chem. Rev.
117
,
7964
8040
(
2017
).
27.
Zhu
,
P.
, and
L.
Wang
, “
Passive and active droplet generation with microfluidics: A review
,”
Lab Chip
17
,
34
75
(
2017
).
28.
Cusola
,
O.
,
S.
Kivistö
,
S.
Vierros
,
P.
Batys
,
M.
Ago
,
B. L.
Tardy
,
L. G.
Greca
,
M. B.
Roncero
,
M.
Sammalkorpi
, and
O. J.
Rojas
, “
Particulate coatings via evaporation-induced self-assembly of polydisperse colloidal lignin on solid interfaces
,”
Langmuir
34
,
5759
5771
(
2018
).
29.
Kaewpetch
,
T.
, and
J. F.
Gilchrist
, “
Chemical versus mechanical microstructure evolution in drying colloid and polymer coatings
,”
Sci. Rep.
10
,
1
10
(
2020
).
30.
Georgiev
,
R. N.
,
S. O.
Toscano
,
W. E.
Uspal
,
B.
Bet
,
S.
Samin
,
R.
van Roij
, and
H. B.
Eral
, “
Universal motion of mirror-symmetric microparticles in confined stokes flow
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
21865
21872
(
2020
).
31.
Mackay
,
M. E.
, “
The importance of rheological behavior in the additive manufacturing technique material extrusion
,”
J. Rheol.
62
,
1549
1561
(
2018
).
32.
Corker
,
A.
,
H. C.
Ng
,
R. J.
Poole
, and
E.
García-Tuǹón
, “
3D printing with 2D colloids: Designing rheology protocols to predict ‘printability’ of soft-materials
,”
Soft Matter
15
,
1444
1456
(
2019
).
33.
Pfeiffer
,
C.
,
C.
Rehbock
,
D.
Hühn
,
C.
Carrillo-Carrion
,
D. J. D.
Aberasturi
,
V.
Merk
,
S.
Barcikowski
, and
W. J.
Parak
, “
Interaction of colloidal nanoparticles with their local environment: The (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles
,”
J. R. Soc. Interface
11
,
20130931
(
2014
).
34.
Varoqui
,
R.
, and
P.
Dejardin
, “
Hydrodynamic thickness of adsorbed polymers
,”
J. Chem. Phys.
66
,
4395
4399
(
1977
).
35.
Russel
,
W. B.
, “
The huggins coefficient as a means for characterizing suspended particles
,”
J. Chem. Soc., Faraday Trans. 2
80
,
31
41
(
1984
).
36.
Riese
,
D. O.
,
G. H.
Wegdam
,
W. L.
Vos
,
R.
Sprik
,
D.
Fenistein
,
J. H.
Bongaerts
, and
G.
Grübel
, “
Effective screening of hydrodynamic interactions in charged colloidal suspensions
,”
Phys. Rev. Lett.
85
,
5460
5463
(
2000
).
37.
Hoh
,
N. J.
, and
R. N.
Zia
, “
Force-induced diffusion in suspensions of hydrodynamically interacting colloids
,”
J. Fluid Mech.
795
,
739
783
(
2016
).
38.
Beenakker
,
C. W.
, “
The effective viscosity of a concentrated suspension of spheres (and its relation to diffusion)
,”
Physica A
128
,
48
81
(
1984
).
39.
Medina-Noyola
,
M.
, “
Long-time self-diffusion in concentrated colloidal dispersions
,”
Phys. Rev. Lett.
60
,
2705
2708
(
1988
).
40.
Selim
,
M. S.
,
M. A.
Al-Naafa
, and
M. C.
Jones
, “
Brownian diffusion of hard spheres at finite concentrations
,”
AIChE J.
39
,
3
16
(
1993
).
41.
Brady
,
J. F.
, “
The long-time self-diffusivity in concentrated colloidal dispersions
,”
J. Fluid Mech.
272
,
109
133
(
1994
).
42.
Parry
,
B. R.
,
I. V.
Surovtsev
,
M. T.
Cabeen
,
C. S.
O’Hern
,
E. R.
Dufresne
, and
C.
Jacobs-Wagner
, “
The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity
,”
Cell
156
,
183
194
(
2014
).
43.
Cayley
,
S.
,
B. A.
Lewis
,
H. J.
Guttman
, and
M. T.
Record
, “
Characterization of the cytoplasm of Escherichia coli k-12 as a function of external osmolarity. Implications for protein-dna interactions in vivo
,”
J. Mol. Biol.
222
,
281
300
(
1991
).
44.
Pusey
,
P. N.
, and
W. V.
Megen
, “
Phase behaviour of concentrated suspensions of nearly hard colloidal spheres
,”
Nature
320
,
340
342
(
1986
).
45.
van Megen
,
W.
, and
S. M.
Underwood
, “
Glass transition in colloidal hard spheres: Measurement and mode-coupling-theory analysis of the coherent intermediate scattering function
,”
Phys. Rev. E
49
,
4206
4220
(
1994
).
46.
Pusey
,
P. N.
,
E.
Zaccarelli
,
C.
Valeriani
,
E.
Sanz
,
W. C.
Poon
, and
M. E.
Cates
, “
Hard spheres: Crystallization and glass formation
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
367
,
4993
5011
(
2009
).
47.
Zaccarelli
,
E.
,
S. M.
Liddle
, and
W. C.
Poon
, “
On polydispersity and the hard sphere glass transition
,”
Soft Matter
11
,
324
330
(
2015
).
48.
Weeks
,
E. R.
, “
Introduction to the colloidal glass transition
,”
ACS Macro Lett.
6
,
27
34
(
2017
).
49.
Aponte-Rivera
,
C.
, and
R. N.
Zia
, “
Simulation of hydrodynamically interacting particles confined by a spherical cavity
,”
Phys. Rev. Fluids
1
,
023301
(
2016
).
50.
Aponte-Rivera
,
C.
,
Y.
Su
, and
R. N.
Zia
, “
Equilibrium structure and diffusion in concentrated hydrodynamically interacting suspensions confined by a spherical cavity
,”
J. Fluid Mech.
836
,
413
450
(
2018
).
51.
Gonzalez
,
E.
,
C.
Aponte-Rivera
, and
R. N.
Zia
, “
Impact of polydispersity and confinement on diffusion in hydrodynamically interacting colloidal suspensions
,”
J. Fluid Mech.
925
,
A35
(
2021
).
52.
Aponte-Rivera
,
C.
, and
R. N.
Zia
, “The confined generalized Stokes–Einstein relation and its consequence on intracellular two-point microrheology,”
J. Colloid Interface Sci.
609, 423–433 (2022).
53.
Holmqvist
,
P.
,
J. K.
Dhont
, and
P. R.
Lang
, “
Anisotropy of Brownian motion caused only by hydrodynamic interaction with a wall
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
74
,
021402
(
2006
).
54.
Holmqvist
,
P.
,
J. K.
Dhont
, and
P. R.
Lang
, “
Colloidal dynamics near a wall studied by evanescent wave light scattering: Experimental and theoretical improvements and methodological limitations
,”
J. Chem. Phys.
126
,
044707
(
2007
).
55.
Swan
,
J. W.
, and
J. F.
Brady
, “
Simulation of hydrodynamically interacting particles near a no-slip boundary
,”
Phys. Fluids
19
,
113306
(
2007
).
56.
Michailidou
,
V. N.
,
G.
Petekidis
,
J. W.
Swan
, and
J. F.
Brady
, “
Dynamics of concentrated hard-sphere colloids near a wall
,”
Phys. Rev. Lett.
102
,
068302
(
2009
).
57.
Swan
,
J. W.
, and
J. F.
Brady
, “
Particle motion between parallel walls: Hydrodynamics and simulation
,”
Phys. Fluids
22
,
103301
(
2010
).
58.
Swan
,
J. W.
, and
J. F.
Brady
, “
The hydrodynamics of confined dispersions
,”
J. Fluid Mech.
687
,
254
299
(
2011
).
59.
Lele
,
P. P.
,
J. W.
Swan
,
J. F.
Brady
,
N. J.
Wagner
, and
E. M.
Furst
, “
Colloidal diffusion and hydrodynamic screening near boundaries
,”
Soft Matter
7
,
6844
6852
(
2011
).
60.
Edmond
,
K. V.
,
C. R.
Nugent
, and
E. R.
Weeks
, “
Influence of confinement on dynamical heterogeneities in dense colloidal samples
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
85
,
041401
(
2012
).
61.
Mittal
,
J.
,
J. R.
Errington
, and
T. M.
Truskett
, “
Thermodynamics predicts how confinement modifies the dynamics of the equilibrium hard-sphere fluid
,”
Phys. Rev. Lett.
96
,
177804
(
2006
).
62.
Mittal
,
J.
,
J. R.
Errington
, and
T. M.
Truskett
, “
Does confining the hard-sphere fluid between hard walls change its average properties?
,”
J. Chem. Phys.
126
,
244708
(
2007
).
63.
Mittal
,
J.
,
T. M.
Truskett
,
J. R.
Errington
, and
G.
Hummer
, “
Layering and position-dependent diffusive dynamics of confined fluids
,”
Phys. Rev. Lett.
100
,
145901
(
2008
).
64.
Goel
,
G.
,
W. P.
Krekelberg
,
M. J.
Pond
,
J.
Mittal
,
V. K.
Shen
,
J. R.
Errington
, and
T. M.
Truskett
, “
Available states and available space: Static properties that predict self-diffusivity of confined fluids
,”
J. Stat. Mech.: Theory Exp.
2009
,
P04006
(
2009
).
65.
Weiss
,
M.
,
M.
Elsner
,
F.
Kartberg
, and
T.
Nilsson
, “
Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells
,”
Biophys. J.
87
,
3518
3524
(
2004
).
66.
McGuffee
,
S. R.
, and
A. H.
Elcock
, “
Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm
,”
PLoS Comput. Biol.
6
,
e1000694
(
2010
).
67.
Ando
,
T.
, and
J.
Skolnick
, “
Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion
,”
Proc. Natl. Acad. Sci.
107
,
18457
18462
(
2010
).
68.
Weber
,
S. C.
,
J. A.
Theriot
, and
A. J.
Spakowitz
, “
Subdiffusive motion of a polymer composed of subdiffusive monomers
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
82
,
011913
(
2010
).
69.
Shinar
,
T.
,
M.
Mana
,
F.
Piano
, and
M. J.
Shelley
, “
A model of cytoplasmically driven microtubule-based motion in the single-celled Caenorhabditis elegans embryo
,”
Proc. Natl. Acad. Sci.
108
,
10508
10513
(
2011
).
70.
Shelley
,
M. J.
, “
The dynamics of microtubule/motor-protein assemblies in biology and physics
,”
Annu. Rev. Fluid Mech.
48
,
487
506
(
2016
).
71.
Chow
,
E.
, and
J.
Skolnick
, “
Effects of confinement on models of intracellular macromolecular dynamics
,”
Proc. Natl. Acad. Sci.
112
,
14846
14851
(
2015
).
72.
Foster
,
P. J.
,
S.
Furthauer
,
M. J.
Shelley
, and
D. J.
Needleman
, “
Active contraction of microtubule networks
,”
eLife
4
,
1
21
(
2015
).
73.
Nazockdast
,
E.
,
A.
Rahimian
,
D.
Needleman
, and
M.
Shelley
, “
Cytoplasmic flows as signatures for the mechanics of mitotic positioning
,”
Mol. Biol. Cell
28
,
3261
3270
(
2017
).
74.
Saintillan
,
D.
,
M. J.
Shelley
, and
A.
Zidovska
, “
Extensile motor activity drives coherent motions in a model of interphase chromatin
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
11442
11447
(
2018
).
75.
Li
,
J.
,
X.
Jiang
,
A.
Singh
,
O. G.
Heinonen
,
J. P.
Hernández-Ortiz
, and
J. J.
de Pablo
, “
Structure and dynamics of hydrodynamically interacting finite-size Brownian particles in a spherical cavity: Spheres and cylinders
,”
J. Chem. Phys.
152
,
204109
(
2020
).
76.
Chong
,
J. S.
,
E. B.
Christiansen
, and
A. D.
Baer
, “
Rheology of concentrated suspensions
,”
J. Appl. Polym. Sci.
15
,
2007
2021
(
1971
).
77.
Poslinski
,
A. J.
,
M. E.
Ryan
,
R. K.
Gupta
,
S. G.
Seshadri
, and
F. J.
Frechette
, “
Rheological behavior of filled polymeric systems II. The effect of a bimodal size distribution of particulates
,”
J. Rheol.
32
,
751
771
(
1988
).
78.
Rodriguez
,
B. E.
,
E. W.
Kaler
, and
M. S.
Wolfe
, “
Binary mixtures of monodisperse latex dispersions. 2. Viscosity
,”
Langmuir
8
,
2382
2389
(
1992
).
79.
Yang
,
X.
,
C.
Liu
,
Y.
Li
,
F.
Marchesoni
,
P.
Hänggi
, and
H. P.
Zhang
, “
Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
9564
9569
(
2017
).
80.
Einstein
,
A.
, “
On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat
,”
Ann. Phys.
322
,
549
560
(
1905
).
81.
Sutherland
,
W.
, “
LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
9
,
781
785
(
1905
).
82.
Einstein
,
A.
, “
On the theory of Brownian movement
,”
Ann. Phys.
19
,
371
381
(
1906
).
83.
Einstein
,
A.
, “
A new determination of molecular dimensions
,”
Ann. Phys.
324
,
289
306
(
1906
).
84.
Einstein
,
A.
, “
Theoretical observations on the Brownian motion
,”
Z. Elektrochem.
13
,
41
42
(
1907
).
85.
Einstein
,
A.
, “
The elementary theory of Brownian motion
,”
Z. Elektrochem.
14
,
235
239
(
1908
).
86.
Batchelor
,
G. K.
, “
Brownian diffusion of particles with hydrodynamic interaction
,”
J. Fluid Mech.
74
,
1
29
(
1976
).
87.
Batchelor
,
G. K.
, “
The effect of Brownian motion on the bulk stress in a suspension of spherical particles
,”
J. Fluid Mech.
83
,
97
117
(
1977
).
88.
Batchelor
,
G. K.
, “
Diffusion in a dilute polydisperse system of interacting spheres
,”
J. Fluid Mech.
131
,
155
175
(
1983
).
89.
Rallison
,
J. M.
, and
E. J.
Hinch
, “
The effect of particle interactions on dynamic light scattering from a dilute suspension
,”
J. Fluid Mech.
167
,
131
168
(
1986
).
90.
Johari
,
C. P.
, and
M.
Goidstein
, “
Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules
,”
J. Chem. Phys.
53
,
2372
2388
(
1970
).
91.
Weeks
,
E. R.
,
J. C.
Crocker
,
A. C.
Levitt
,
A.
Schofield
, and
D. A.
Weitz
, “
Three-dimensional direct imaging of structural relaxation near the colloidal glass transition
,”
Science
287
,
627
631
(
2000
).
92.
Peng
,
X.
,
J. G.
Wang
,
Q.
Li
,
D.
Chen
,
R. N.
Zia
, and
G. B.
McKenna
, “
Exploring the validity of time-concentration superposition in glassy colloids: Experiments and simulations
,”
Phys. Rev. E
98
,
062602
(
2018
).
93.
Wang
,
J. G.
,
Q.
Li
,
X.
Peng
,
G. B.
McKenna
, and
R. N.
Zia
, “
‘Dense diffusion’ in colloidal glasses: Short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics
,”
Soft Matter
16
,
7370
7389
(
2020
).
94.
Wang
,
J. G.
, and
R. N.
Zia
, “
Vitrification is a spontaneous non-equilibrium transition driven by osmotic pressure
,”
J. Phys.: Condens. Matter
33
,
184002
(
2021
).
95.
Dolata
,
B. E.
, and
R. N.
Zia
, “
Non-equilibrium pair interactions in colloidal dispersions
,”
J. Fluid Mech.
836
,
694
739
(
2018
).
96.
Gillespie
,
T.
, “
Application of the hydrodynamic-structural theory of non-Newtonian flow to suspensions which exhibit moderate shear thickening with particular reference to ‘dilatant’ vinyl plastisols
,”
J. Colloid Interface Sci.
22
,
554
562
(
1966
).
97.
Strivens
,
T. A.
, “
The shear thickening effect in concentrated dispersion systems
,”
J. Colloid Interface Sci.
57
,
476
487
(
1976
).
98.
Russel
,
W. B.
, “
Review of the role of colloidal forces in the rheology of suspensions
,”
J. Rheol.
24
,
287
317
(
1980
).
99.
Woodcock
,
L. V.
, “
Origins of shear dilatancy and shear thickening phenomena
,”
Chem. Phys. Lett.
111
,
455
461
(
1984
).
100.
Heyes
,
D. M.
, “
Shear thinning of dense suspensions modelled by Brownian dynamics
,”
Phys. Lett. A
132
,
399
402
(
1988
).
101.
Bossis
,
G.
, and
J. F.
Brady
, “
The rheology of Brownian suspensions
,”
J. Chem. Phys.
91
,
1866
1874
(
1989
).
102.
Foss
,
D. R.
, and
J. F.
Brady
, “
Brownian dynamics simulation of hard-sphere colloidal dispersions
,”
J. Rheol.
44
,
629
651
(
2000
).
103.
Foss
,
D. R.
, and
J. F.
Brady
, “
Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation
,”
J. Fluid Mech.
407
,
167
200
(
2000
).
104.
Carpen
,
I. C.
, and
J. F.
Brady
, “
Microrheology of colloidal dispersions by Brownian dynamics simulations
,”
J. Rheol.
49
,
1483
1502
(
2005
).
105.
Squires
,
T. M.
, and
J. F.
Brady
, “
A simple paradigm for active and nonlinear microrheology
,”
Phys. Fluids
17
,
1
21
(
2005
).
106.
Zia
,
R. N.
, and
J. F.
Brady
, “
Single-particle motion in colloids: Force-induced diffusion
,”
J. Fluid Mech.
658
,
188
210
(
2010
).
107.
Zia
,
R. N.
, and
J. F.
Brady
, “
Microviscosity, microdiffusivity, and normal stresses in colloidal dispersions
,”
J. Rheol.
56
,
1175
1208
(
2012
).
108.
Chu
,
H. C. W.
, and
R. N.
Zia
, “
Active microrheology of hydrodynamically interacting colloids: Normal stresses and entropic energy density
,”
J. Rheol.
60
,
755
781
(
2016
).
109.
Chu
,
H. C. W.
, and
R. N.
Zia
, “
The non-Newtonian rheology of hydrodynamically interacting colloids via active, nonlinear microrheology
,”
J. Rheol.
61
,
551
574
(
2017
).
110.
Chu
,
H. C.
, and
R. N.
Zia
, “
Toward a nonequilibrium Stokes–Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions
,”
J. Colloid Interface Sci.
539
,
388
399
(
2019
).
111.
Huang
,
D. E.
, and
R. N.
Zia
, “
Sticky, active microrheology: Part 1. Linear-response
,”
J. Colloid Interface Sci.
554
,
580
591
(
2019
).
112.
Huang
,
D. E.
, and
R. N.
Zia
, “
Sticky-probe active microrheology: Part 2. The influence of attractions on non-Newtonian flow
,”
J. Colloid Interface Sci.
562
,
293
306
(
2020
).
113.
Mason
,
T. G.
, and
D. A.
Weitz
, “
Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids
,”
Phys. Rev. Lett.
74
,
1250
1253
(
1995
).
114.
Nägele
,
G.
, and
J.
Bergenholtz
, “
Linear viscoelasticity of colloidal mixtures
,”
J. Chem. Phys.
108
,
9893
9904
(
1998
).
115.
Banchio
,
A. J.
,
G.
Nägele
, and
J.
Bergenholtz
, “
Viscoelasticity and generalized Stokes–Einstein relations of colloidal dispersions
,”
J. Chem. Phys.
111
,
8721
8740
(
1999
).
116.
Squires
,
T. M.
, and
T. G.
Mason
, “
Fluid mechanics of microrheology
,”
Annu. Rev. Fluid Mech.
42
,
413
438
(
2010
).
117.
Khair
,
A. S.
, and
J. F.
Brady
, “
Microrheology of colloidal dispersions: Shape matters
,”
J. Rheol.
52
,
165
196
(
2008
).
118.
Zia
,
R. N.
, and
J. F.
Brady
, “
Stress development, relaxation, and memory in colloidal dispersions: Transient nonlinear microrheology
,”
J. Rheol.
57
,
457
492
(
2013
).
119.
Zia
,
R. N.
, “
Active and passive microrheology: Theory and simulation
,”
Annu. Rev. Fluid Mech.
50
,
371
405
(
2018
).
120.
Ma
,
Y.
,
X.
Wang
,
H.
Liu
,
L.
Wei
, and
L.
Xiao
, “
Recent advances in optical microscopic methods for single-particle tracking in biological samples
,”
Anal. Bioanal. Chem.
411
,
4445
4463
(
2019
).
121.
Tough
,
R. J. A.
, and
C. B. D.
Broeck
, “
Diffusion within a sphere; a non-Gaussian statistical model for particle displacements in a dense colloidal suspension
,”
Physica A
157
,
769
796
(
1989
).
122.
Saintillan
,
D.
,
M. J.
Shelley
, and
A.
Zidovska
, “
Extensile motor activity drives coherent motions in a model of interphase chromatin
,”
Proc. Natl. Acad. Sci.
115
,
11442
11447
(
2018
).
123.
MacPherson
,
Q.
,
B.
Beltran
, and
A. J.
Spakowitz
, “
Bottom–up modeling of chromatin segregation due to epigenetic modifications
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
12739
12744
(
2018
).
124.
Heyes
,
D. M.
, and
J. R.
Melrose
, “
Brownian dynamics simulations of model hard-sphere suspensions
,”
J. Non-Newtonian Fluid Mech.
46
,
1
28
(
1993
).
125.
Schaertl
,
W.
, and
H.
Sillescu
, “
Brownian dynamics of polydisperse colloidal hard spheres: Equilibrium structures and random close packings
,”
J. Stat. Phys.
77
,
1007
1025
(
1994
).
126.
Németh
,
Z. T.
, and
H.
Löwen
, “
Freezing and glass transition of hard spheres in cavities
,”
Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
59
,
6824
6829
(
1999
).
127.
Zhang
,
D. Z.
, and
A.
Prosperetti
, “
Ensemble phase-averaged equations for bubbly flows
,”
Phys. Fluids
6
,
2956
2970
(
1994
).
128.
Man
,
W.
,
A.
Donev
,
F. H.
Stillinger
,
M. T.
Sullivan
,
W. B.
Russel
,
D.
Heeger
,
S.
Inati
,
S.
Torquato
, and
P. M.
Chaikin
, “
Experiments on random packings of ellipsoids
,”
Phys. Rev. Lett.
94
,
1
4
(
2005
).
129.
Dolata
,
B. E.
, and
R. N.
Zia
, “
Heterogeneous dispersions as microcontinuum fluids
,”
J. Fluid Mech.
888
,
A28
(
2020
).
130.
Zia
,
R. N.
,
B. J.
Landrum
, and
W. B.
Russel
, “
A micro-mechanical study of coarsening and rheology of colloidal gels: Cage building, cage hopping, and Smoluchowski’s ratchet
,”
J. Rheol.
58
,
1121
1157
(
2014
).
131.
Johnson
,
L. C.
,
R. N.
Zia
,
E.
Moghimi
, and
G.
Petekidis
, “
Influence of structure on the linear response rheology of colloidal gels
,”
J. Rheol.
63
,
583
608
(
2019
).
132.
Ryu
,
B. K.
,
S. M.
Fenton
,
T. T. D.
Nguyen
,
M.
Helgeson
, and
R. N.
Zia
, “
Modeling colloidal interactions that predict equilibrium and non-equilibrium states
,”
J. Chem. Phys.
156
,
224101
(
2022
).
133.
Hofmann
,
J. L.
,
T. S.
Yang
,
A. M.
Sunol
, and
R. N.
Zia
, “Protein-protein interaction valency regulates prokaryotic protein synthesis via colloidal-scale transport” (unpublished).
134.
Langevin
,
P.
, “
Sur la théorie du mouvement brownien
,”
C.R. Acad. Sci.
146
,
530
533
(
1908
).
135.
Milatz
,
J. M.
, and
L. S.
Ornstein
, “
Properties of the fortuitous force in the Einstein–Langevin equation
,”
Physica
7
,
793
801
(
1940
).
136.
Bixon
,
M.
, and
R.
Zwanzig
, “
Boltzmann-langevin equation and hydrodynamic fluctuations
,”
Phys. Rev.
187
,
267
272
(
1969
).
137.
Ermak
,
D. L.
, and
J. A.
McCammon
, “
Brownian dynamics with hydrodynamic interactions
,”
J. Chem. Phys.
69
,
1352
1360
(
1978
).
138.
Rintoul
,
M. D.
, and
S.
Torquato
, “
Computer simulations of dense hard-sphere systems
,”
J. Chem. Phys.
105
,
9258
9265
(
1996
).
139.
Peng
,
Y.
,
W.
Chen
,
T. M.
Fischer
,
D. A.
Weitz
, and
P.
Tong
, “
Short-time self-diffusion of nearly hard spheres at an oil-water interface
,”
J. Fluid Mech.
618
,
243
261
(
2009
).
140.
Kämmerer
,
S.
,
W.
Kob
, and
R.
Schilling
, “
Dynamics of the rotational degrees of freedom in a supercooled liquid of diatomic molecules
,”
Phys. Rev. E: Stat., Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
56
,
5450
5461
(
1997
).
141.
Michele
,
C. D.
, and
D.
Leporini
, “
Viscous flow and jump dynamics in molecular supercooled liquids. II. Rotations
,”
Phys. Rev. E
63
,
036702
(
2001
).
142.
Hunter
,
G. L.
,
K. V.
Edmond
,
M. T.
Elsesser
, and
E. R.
Weeks
, “
Tracking rotational diffusion of colloidal clusters
,”
Opt. Express
19
,
17189
(
2011
).
143.
Brady
,
J. F.
, “
Brownian motion, hydrodynamics, and the osmotic pressure
,”
J. Chem. Phys.
98
,
3335
3341
(
1993
).
144.
Strating
,
P.
, “
The stress tensor in colloidal suspensions
,”
J. Chem. Phys.
103
,
10226
10237
(
1995
).
145.
Batchelor
,
G. K.
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
41
,
545
570
(
1970
).
146.
Sierou
,
A.
, and
J. F.
Brady
, “
Accelerated Stokesian dynamics simulations
,”
J. Fluid Mech.
448
,
115
146
(
2001
).
147.
Banchio
,
A. J.
, and
J. F.
Brady
, “
Accelerated Stokesian dynamics: Brownian motion
,”
J. Chem. Phys.
118
,
10323
10332
(
2003
).
148.
Percus
,
J. K.
, and
G. J.
Yevick
, “
Analysis of classical statistical mechanics by means of collective coordinates
,”
Phys. Rev.
110
,
1
13
(
1958
).
149.
Kirkwood
,
J. G.
, “
The general theory of irreversible processes in solutions of macromolecules
,”
J. Polym. Sci.
XII
,
1
14
(
1954
).
150.
Doi
,
M.
, “
Variational principle for the kirkwood theory for the dynamics of polymer solutions and suspensions
,”
J. Chem. Phys.
79
,
5080
5087
(
1983
).
151.
Hofmann
,
J. L.
,
A. J.
Maheshwari
,
A. M.
Sunol
,
D.
Endy
, and
R. N.
Zia
, “Ultra-weak protein-protein interactions can modulate proteome-wide searching and binding,” bioRxiv (2022).
152.
Elowitz
,
M. B.
,
M. G.
Surette
,
P.-E.
Wolf
,
J. B.
Stock
, and
S.
Leibler
, “
Protein mobility in the cytoplasm of Escherichia coli
,”
J. Bacteriol.
181
,
197
203
(
1999
).
153.
Green
,
M. S.
, “
Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids
,”
J. Chem. Phys.
22
,
398
413
(
1954
).
154.
Kubo
,
R.
, “
Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems
,”
J. Phys. Soc. Jpn.
12
,
570
586
(
1957
).
155.
Bergenholtz
,
J.
,
J. F.
Brady
, and
M.
Vicic
, “
The non-Newtonian rheology of dilute colloidal suspensions
,”
J. Fluid Mech.
456
,
239
275
(
2002
).
156.
Khair
,
A. S.
, and
J. F.
Brady
, “
Single particle motion in colloidal dispersions: A simple model for active and nonlinear microrheology
,”
J. Fluid Mech.
557
,
73
117
(
2006
).
157.
Cichocki
,
B.
, and
B. U.
Felderhof
, “
Linear viscoelasticity of semidilute hard-sphere suspensions
,”
Phys. Rev. A
43
,
5405
5411
(
1991
).
158.
Brady
,
J. F.
, “
The rheological behavior of concentrated colloidal dispersions
,”
J. Chem. Phys.
99
,
567
581
(
1993
).
159.
Foss
,
D. R.
, “
Rheological behavior of colloidal suspensions: The effects of hydrodynamic interactions
” Ph.D. thesis, California Institute of Technology, 1999.
160.
Swaroop
,
M.
, “
The bulk viscosity of suspensions
,” Ph.D. thesis, California Institute of Technology, 2010.
161.
Oseen
,
C. W.
,
Neuere Methoden und Ergebnisse in der Hydrodynamik
(
Akademische Verlagsgesellschaft
,
Leipzig, Germany
,
1927
).
162.
Urrutia
,
I.
, “
Two hard spheres in a spherical pore: Exact analytic results in two and three dimensions
,”
J. Stat. Phys.
131
,
597
611
(
2008
).
163.
Urrutia
,
I.
, and
L.
Szybisz
, “
Statistical mechanics of two hard spheres in a spherical pore, exact analytic results in d dimension
,”
J. Math. Phys.
51
,
033303
(
2010
).
164.
Urrutia
,
I.
, “
Two hard spheres in a pore: Exact statistical mechanics for different shaped cavities
,”
J. Chem. Phys.
133
,
104503
(
2010
).
165.
Zhang
,
B.
, and
X.
Cheng
, “
Structures and dynamics of glass-forming colloidal liquids under spherical confinement
,”
Phys. Rev. Lett.
116
,
098302
(
2016
).
166.
Chen
,
D.
, and
G. B.
McKenna
, “
Deep glassy state dynamic data challenge glass models: Configurational entropy models
,”
J. Non-Cryst. Solids
566
,
120871
(
2021
).
167.
Furnas
,
C. C.
, “
Mathematical relations for beds of broken solids of maximum density
,”
Ind. Eng. Chem.
23
,
1052
1058
(
1931
).
168.
Wang
,
M.
, and
J. F.
Brady
, “
Constant stress and pressure rheology of colloidal suspensions
,”
Phys. Rev. Lett.
115
,
158301
(
2015
).
169.
Desmond
,
K. W.
, and
E. R.
Weeks
, “
Random close packing of disks and spheres in confined geometries
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
80
,
051305
(
2009
).
170.
Bremer
,
H.
, and
P. P.
Dennis
, “
Modulation of chemical composition and other parameters of the cell at different exponential growth rates
,”
EcoSal Plus
3
,
ecosal.5.2.3
(
2008
).
171.
Amiad-Pavlov
,
D.
,
D.
Lorber
,
G.
Bajpai
,
A.
Reuveny
,
F.
Roncato
,
R.
Alon
,
S.
Safran
, and
T.
Volk
, “
Live imaging of chromatin distribution reveals novel principles of nuclear architecture and chromatin compartmentalization
,”
Sci. Adv.
7
,
6251
6253
(
2021
).
172.
Lang
,
F.
, “
Mechanisms and significance of cell volume regulation
,”
J. Am. Coll. Nutr.
26
,
613S
623S
(
2007
).
173.
Adar
,
R. M.
, and
S. A.
Safran
, “
Active volume regulation in adhered cells
,”
Proc. Natl. Acad. Sci.
117
,
5604
5609
(
2020
).
174.
Yan
,
G.
,
S.
Monnier
,
M.
Mouelhi
, and
T.
Dehoux
, “
Probing molecular crowding in compressed tissues with brillouin light scattering
,”
Proc. Natl. Acad. Sci.
119
,
e2113614119
(
2022
).
175.
Hunter
,
G. L.
,
K. V.
Edmond
, and
E. R.
Weeks
, “
Boundary mobility controls glassiness in confined colloidal liquids
,”
Phys. Rev. Lett.
112
,
218302
(
2014
).
176.
Crocker
,
J. C.
,
M. T.
Valentine
,
E. R.
Weeks
,
T.
Gisler
,
P. D.
Kaplan
,
A. G.
Yodh
, and
D. A.
Weitz
, “
Two-point microrheology of inhomogeneous soft materials
,”
Phys. Rev. Lett.
85
,
888
891
(
2000
).
177.
Crocker
,
J. C.
, and
B. D.
Hoffman
, “
Multiple-particle tracking and two-point microrheology in cells
,”
Methods Cell Biol.
83
,
141
178
(
2007
).
178.
Williams
,
I.
,
E. C.
Oğuz
,
P.
Bartlett
,
H.
Löwen
, and
C. P.
Royall
, “
Direct measurement of osmotic pressure via adaptive confinement of quasi hard disc colloids
,”
Nat. Commun.
4
,
2555
(
2013
).
179.
Jeffrey
,
D. J.
, and
Y.
Onishi
, “
Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow
,”
J. Fluid Mech.
139
,
261
–290 (
1984
).
180.
Zia
,
R. N.
,
J. W.
Swan
, and
Y.
Su
, “
Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation
,”
J. Chem. Phys.
143
,
224901
(
2015
).
181.
Dolata
,
B. E.
, “
Micromechanical modeling of heterogeneous dispersions
,” Ph.D. thesis, Cornell University, 2019.
182.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000520 for the supplementary figures discussed throughout the paper.

Supplementary Material

You do not currently have access to this content.