Laboratory experiments were conducted to study particle migration and flow properties of non-Brownian, noncolloidal suspensions ranging from 10% to 40% particle volume fraction in a pressure-driven flow over and through a porous structure at a low Reynolds number. Particle concentration maps, velocity maps, and corresponding profiles were acquired using a magnetic resonance imaging technique. The model porous medium consists of square arrays of circular rods oriented across the flow in a rectangular microchannel. It was observed that the square arrays of the circular rods modify the velocity profiles and result in heterogeneous concentration fields for various suspensions. As the bulk particle volume fraction of the suspension increases, particles tend to concentrate in the free channel relative to the porous medium while the centerline velocity profile along the lateral direction becomes increasingly blunted. Within the porous structure, concentrated suspensions exhibit smaller periodic axial velocity variations due to the geometry compared to semidilute suspensions (bulk volume fraction ranges from 10% to 20%) and show periodic concentration variations, where the average particle concentration is slightly greater between the rods than on top of the rods. For concentrated systems, high particle concentration pathways aligned with the flow direction are observed in regions that correspond to gaps between rods within the porous medium.

1.
Goharzadeh
,
A.
,
A.
Khalili
, and
B. B.
Jørgensen
, “
Transition layer thickness at a fluid-porous interface
,”
Phys. Fluids
17
,
057102
(
2005
).
2.
Ghisalberti
,
M.
, and
H.
Nepf
, “
Shallow flows over a permeable medium: The hydrodynamics of submerged aquatic canopies
,”
Trans. Porous Media
78
,
309
326
(
2009
).
3.
Kruijt
,
B.
,
Y.
Malhi
,
J.
Lloyd
,
A. D.
Norbre
,
A. C.
Miranda
,
M. G. P.
Pereira
,
A.
Culf
, and
J.
Grace
, “
Turbulence statistics above and within two Amazon rain forest canopies
,”
Boundary-Layer Meteorol.
94
,
297
331
(
2000
).
4.
Guo
,
P.
,
A. M.
Weinstein
, and
S.
Weinbaum
, “
A hydrodynamic mechanosensory hypothesis for brush border microvilli
,”
Am. J. Physiol. Renal Physiol.
279
,
F698
F712
(
2000
).
5.
Mirbod
,
P.
,
Y.
Andreopoulos
, and
S.
Weinbaum
, “
On the generation of lift forces in random soft porous media
,”
J. Fluid Mech.
619
,
147
166
(
2009
).
6.
Mirbod
,
P.
,
Z.
Wu
, and
G.
Ahmadi
, “
Laminar flow drag reduction on soft porous media
,”
Sci. Rep.
7
,
1
10
(
2017
).
7.
Battiato
,
I.
,
P. R.
Bandaru
, and
D. M.
Tartakovsky
, “
Elastic response of carbon nanotube forests to aerodynamic stresses
,”
Phys. Rev. Lett.
105
,
144504
(
2010
).
8.
Deng
,
M.
,
X.
Li
,
H.
Liang
,
B.
Caswell
, and
G. E.
Karniadakis
, “
Simulation and modelling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibres
,”
J. Fluid Mech.
711
,
192
211
(
2012
).
9.
Barnes
,
H. A.
,
Dispersion Rheology 1980: A Survey of Industrial Problems and Academic Progress
(
Process Technology Group of the Royal Chemical Society
, London,
1981
).
10.
Gadala-Maria
,
F.
, and
A.
Acrivos
, “
Shear-induced structure in a concentrated suspension of solid spheres
,”
J. Rheol.
24
,
799
814
(
1980
).
11.
Leighton
,
D.
, and
A.
Acrivos
, “
The shear-induced migration of particles in concentrated suspensions
,”
J. Fluid Mech.
181
,
415
439
(
1987
).
12.
Abbot
,
J. R.
,
N.
Tetlow
,
A. L.
Graham
,
S. A.
Altobelli
,
E.
Fukushima
,
L. A.
Mondy
, and
T. S.
Stephens
, “
Experimental observations of particle migration in concentrated suspensions: Couette flow
,”
J. Rheol.
35
,
773
795
(
1991
).
13.
Altobelli
,
S. R.
,
R. C.
Givler
, and
E.
Fukushima
, “
Velocity and concentration measurements of suspensions by nuclear magnetic resonance imaging
,”
J. Rheol.
35
,
721
734
(
1991
).
14.
Phillips
,
R. J.
,
R. C.
Armstrong
,
R. A.
Brown
,
A. L.
Graham
, and
J. R.
Abbott
, “
A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration
,”
Phys. Fluids A
4
,
30
40
(
1992
).
15.
McTigue
,
D. F.
, and
J. T.
Jenkins
, “
Channel flow of a concentrated suspension
,” in
Studies in Applied Mechanics
(
Elsevier
,
1992
), pp.
381
390
.
16.
Chow
,
A. W.
,
S. W.
Sinton
,
J. H.
Iwamiya
, and
T. S.
Stephens
, “
Shear-induced particle migration in Couette and parallel-plate viscometers: NMR imaging and stress measurements
,”
Phys. Fluids
6
,
2561
2576
(
1994
).
17.
Nott
,
P. R.
, and
J. F.
Brady
, “
Pressure-driven flow of suspensions: Simulation and theory
,”
J. Fluid Mech.
275
,
157
199
(
1994
).
18.
Koh
,
C. J.
,
P.
Hookham
, and
L. G.
Leal
, “
An experimental investigation of concentrated suspension flows in a rectangular channel
,”
J. Fluid Mech.
266
,
1
32
(
1994
).
19.
Hampton
,
R. E.
,
A. A.
Mammoli
,
A. L.
Graham
,
N.
Tetlow
, and
S. A.
Altobelli
, “
Migration of particles undergoing pressure-driven flow in a circular conduit
,”
J. Rheol.
41
,
621
640
(
1997
).
20.
Lyon
,
M. K.
, and
L. G.
Leal
, “
An experimental study of the motion of concentrated suspensions in two-dimensional channel flow: Part 1. Monodisperse systems
,”
J. Fluid Mech.
363
,
25
56
(
1998
).
21.
Lyon
,
M. K.
, and
L. G.
Leal
, “
An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 2. Bidisperse systems
,”
J. Fluid Mech.
363
,
57
77
(
1998
).
22.
Morris
,
J. F.
, and
F.
Boulay
, “
Curvilinear flows of noncolloidal suspensions: The role of normal stresses
,”
J. Rheol.
43
,
1213
1237
(
1999
).
23.
Mirbod
,
P.
, “
Two-dimensional computational fluid dynamical investigation of particle migration in rotating eccentric cylinders using suspension balance model
,”
Int. J. Multiphase Flow
80
,
79
88
(
2016
).
24.
Kang
,
C.
, and
P.
Mirbod
, “
Flow instability and transitions in Taylor–Couette flow of a semidilute non-colloidal suspension
,”
J. Fluid Mech.
916
, A12 (
2021
).
25.
Kang
,
C.
,
H. N.
Yoshikawa
, and
P.
Mirbod
, “
Onset of thermal convection in non-colloidal suspensions
,”
J. Fluid Mech.
915
, A128 (
2021
).
26.
Demou
,
A. D.
,
M. N.
Ardekani
,
P.
Mirbod
, and
L.
Brandt
, “
Turbulent Rayleigh–Bénard convection in non-colloidal suspensions
,”
J. Fluid Mech.
945
, A6 (
2022
).
27.
Maxey
,
M.
, “
2017 simulation methods for particulate flows and concentrated suspensions
,”
Annu. Rev. Fluid Mech.
49
,
171
193
(
2017
).
28.
Kang
,
C.
, and
P.
Mirbod
, “
Pressure-driven pipe flow of semi-dilute and dense suspensions over permeable surfaces
,”
Rheol. Acta
60
,
711
718
(
2021
).
29.
Jana
,
S. C.
,
B.
Kapoor
, and
A.
Acrivos
, “
Apparent wall slip velocity coefficients in concentrated suspensions of noncolloidal particles
,”
J. Rheol.
39
,
1123
1132
(
1995
).
30.
Kapoor
,
B.
, and
A.
Acrivos
, “
Sedimentation and sediment flow in settling tanks with inclined walls
,”
J. Fluid Mech.
290
,
39
66
(
1995
).
31.
Averbakh
,
A.
,
A.
Shauly
,
A.
Nir
, and
R.
Semiat
, “
Slow viscous flows of highly concentrated suspensions—Part I: Laser-Doppler velocimetry in rectangular ducts
,”
Int. J. Multiphase Flow
23
,
409
424
(
1997
).
32.
Shapley
,
N. C.
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Laser Doppler velocimetry measurements of particle velocity fluctuations in a concentrated suspension
,”
J. Rheol.
46
,
241
272
(
2002
).
33.
Abbas
,
M. A.
, and
C. T.
Crowe
, “
Experimental study of the flow properties of a homogenous slurry near transitional Reynolds numbers
,”
Int. J. Multiphase Flow
13
,
357
364
(
1987
).
34.
Hassan
,
Y. A.
,
T. K.
Blanchat
,
C. H.
Seeley
, Jr.
, and
R. E.
Canaan
, “
Simultaneous velocity measurements of both components of a two-phase flow using particle image velocimetry
,”
Int. J. Multiphase Flow
18
,
371
395
(
1992
).
35.
Breedveld
,
V.
,
D.
van den Ende
,
A.
Tripathi
, and
A.
Acrivos
, “
The measurement of the shear-induced particle and fluid tracer diffusivities in concentrated suspensions by a novel method
,”
J. Fluid Mech.
375
,
297
318
(
1998
).
36.
Lenoble
,
M.
,
P.
Snabre
, and
B.
Pouligny
, “
The flow of a very concentrated slurry in a parallel-plate device: Influence of gravity
,”
Phys. Fluids
17
,
073303
(
2005
).
37.
Lenoble
,
M.
,
P.
Snabre
,
B.
Pouligny
, and
C.
Barentin
, “
Shearing a granular paste in a Couette device flow and size segregation
,” in
Powders and Grains 2005, Two Volume Set
(
CRC
, London,
2005
), pp.
643
646
.
38.
Wiederseiner
,
S.
,
N.
Andreini
,
G.
Epely-Chauvin
, and
C.
Ancey
, “
Refractive-index and density matching in concentrated particle suspensions: A review
,”
Exp. Fluids
50
,
1183
1206
(
2011
).
39.
Hassan
,
Y. A.
, and
E. E.
Dominguez-Ontiveros
, “
Flow visualization in a pebble bed reactor experiment using PIV and refractive index matching techniques
,”
Nucl. Eng. Des.
238
,
3080
3085
(
2008
).
40.
Abbas
,
M.
,
A.
Pouplin
,
O.
Masbernat
,
A.
Liné
, and
S.
Décarre
, “
Pipe flow of a dense emulsion: Homogeneous shear-thinning or shear-induced migration?
,”
AIChE J.
63
,
5182
5195
(
2017
).
41.
Zade
,
S.
,
P.
Costa
,
W.
Fornari
,
F.
Lundell
, and
L.
Brandt
, “
Experimental investigation of turbulent suspensions of spherical particles in a square duct
,”
J. Fluid Mech.
857
,
748
783
(
2018
).
42.
Zade
,
S.
,
T. J.
Shamu
,
F.
Lundell
, and
L.
Brandt
, “
Finite-size spherical particles in a square duct flow of an elastoviscoplastic fluid: An experimental study
,”
J. Fluid Mech.
883
, A6 (
2020
).
43.
Haffner
,
E. A.
, and
P.
Mirbod
, “
Velocity measurements of dilute particulate suspension over and through a porous medium model
,”
Phys. Fluids
32
,
083608
(
2020
).
44.
Rashedi
,
A.
,
M.
Sarabian
,
M.
Firouznia
,
D.
Roberts
,
G.
Ovarlez
, and
S.
Hormozi
, “
Shear-induced migration and axial development of particles in channel flows of non-Brownian suspensions
,”
AIChE J.
66
,
e17100
(
2020
).
45.
Haffner
,
E. A.
,
J.
Higham
, and
P.
Mirbod
, “
Experimental analysis of dilute particle-laden liquids over and through patterned structures
,”
Bull. Am. Phys. Soc.
64
,
NP05.00064
(
2019
).
46.
Gurung
,
A.
, and
C.
Poelma
, “
Measurement of turbulence statistics in single-phase and two-phase flows using ultrasound imaging velocimetry
,”
Exp. Fluids
57
,
171
(
2016
).
47.
Agelinchaab
,
M.
,
M. F.
Tachie
, and
D. W.
Ruth
, “
Velocity measurement of flow through a model three-dimensional porous medium
,”
Phys. Fluids
18
,
017105
(
2006
).
48.
Arthur
,
J. K.
,
D. W.
Ruth
, and
M. F.
Tachie
, “
PIV measurements of flow through a model porous medium with varying boundary conditions
,”
J. Fluid Mech.
629
,
343
374
(
2009
).
49.
Zerai
,
B.
,
B. Z.
Saylor
,
J. R.
Kadambi
,
M. J.
Oliver
,
A. R.
Mazaheri
,
G.
Ahmadi
,
G. S.
Bromhal
, and
D. H.
Smith
, “
Flow characterization through a network cell using particle image velocimetry
,”
Trans. Porous Media
60
,
159
181
(
2005
).
50.
Stöhr
,
M.
,
K.
Roth
, and
B.
Jähne
, “
Measurement of 3D pore-scale flow in index-matched porous media
,”
Exp. Fluids
35
,
159
166
(
2003
).
51.
Wu
,
Z.
, and
P.
Mirbod
, “
Experimental analysis of the flow near the boundary of random porous media
,”
Phys. Fluids
30
,
047103
(
2018
).
52.
Turney
,
M. A.
,
M. K.
Cheung
,
M. J.
McCarthy
, and
R. L.
Powell
, “
Magnetic resonance imaging study of sedimenting suspensions of noncolloidal spheres
,”
Phys. Fluids
7
,
904
911
(
1995
).
53.
Corbett
,
A. M.
,
R. J.
Phillips
,
R. J.
Kauten
, and
K. L.
McCarthy
, “
Magnetic resonance imaging of concentration and velocity profiles of pure fluids and solid suspensions in rotating geometries
,”
J. Rheol.
39
,
907
924
(
1995
).
54.
Gibbs
,
S. J.
,
K. L.
James
,
L. D.
Hall
,
D. E.
Haycock
,
W. J.
Frith
, and
S.
Ablett
, “
Rheometry and detection of apparent wall slip for Poiseuille flow of polymer solutions and particulate dispersions by nuclear magnetic resonance velocimetry
,”
J. Rheol.
40
,
425
440
(
1996
).
55.
Altobelli
,
S. A.
,
E.
Fukushima
, and
L. A.
Mondy
, “
Nuclear magnetic resonance imaging of particle migration in suspensions undergoing extrusion
,”
J. Rheol.
41
,
1105
1115
(
1997
).
56.
Tetlow
,
N.
,
A. L.
Graham
,
M. S.
Ingber
,
S. R.
Subia
,
L. A.
Mondy
, and
S. A.
Altobelli
, “
Particle migration in a Couette apparatus: Experiment and modeling
,”
J. Rheol.
42
,
307
327
(
1998
).
57.
Han
,
M.
,
C.
Kim
,
M.
Kim
, and
S.
Lee
, “
Particle migration in tube flow of suspensions
,”
J. Rheol.
43
,
1157
1174
(
1999
).
58.
Callaghan
,
P. T.
, “
Rheo-NMR: Nuclear magnetic resonance and the rheology of complex fluids
,”
Rep. Prog. Phys.
62
,
599
670
(
1999
).
59.
Moraczewski
,
T.
,
H.
Tang
, and
N. C.
Shapley
, “
Flow of a concentrated suspension through an abrupt axisymmetric expansion measured by nuclear magnetic resonance imaging
,”
J. Rheol.
49
,
1409
1428
(
2005
).
60.
Moraczewski
,
T.
, and
N. C.
Shapley
, “
The effect of inlet conditions on concentrated suspension flows in abrupt expansions
,”
Phys. Fluids
18
,
123303
(
2006
).
61.
Ovarlez
,
G.
,
F.
Bertrand
, and
S.
Rodts
, “
Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging
,”
J. Rheol.
50
,
259
292
(
2006
).
62.
Moraczewski
,
T.
, and
N. C.
Shapley
, “
Pressure drop enhancement in a concentrated suspension flowing through an abrupt axisymmetric contraction-expansion
,”
Phys. Fluids
19
,
103304
(
2007
).
63.
Hester-Reilly
,
H. J.
, and
N. C.
Shapley
, “
Imaging contrast effects in alginate microbeads containing trapped emulsion droplets
,”
J. Magn. Reson.
188
,
168
175
(
2007
).
64.
Larsen
,
M. U.
, and
N. C.
Shapley
, “
Stream spreading in multilayer microfluidic flows of suspensions
,”
Anal. Chem.
79
,
1947
1953
(
2007
).
65.
Elkins
,
C. J.
, and
M. T.
Alley
, “
Magnetic resonance velocimetry: Applications of magnetic resonance imaging in the measurement of fluid motion
,”
Exp. Fluids
43
,
823
858
(
2007
).
66.
Rao
,
R. R.
,
L. A.
Mondy
, and
S. A.
Altobelli
, “
Instabilities during batch sedimentation in geometries containing obstacles: A numerical and experimental study
,”
Int. J. Numer. Methods Fluids
55
,
723
735
(
2007
).
67.
Xi
,
C.
, and
N. C.
Shapley
, “
Flows of concentrated suspensions through an asymmetric bifurcation
,”
J. Rheol.
52
,
625
647
(
2008
).
68.
Bonn
,
D.
,
S.
Rodts
,
M.
Groenink
,
S.
Rafai
,
N.
Shahidzadeh-Bonn
, and
P.
Coussot
, “
Some applications of magnetic resonance imaging in fluid mechanics: Complex flows and complex fluids
,”
Annu. Rev. Fluid Mech.
40
,
209
233
(
2008
).
69.
Brown
,
J. R.
,
E. O.
Fridjonsson
,
J. D.
Seymour
, and
S. L.
Codd
, “
Nuclear magnetic resonance measurement of shear-induced particle migration in Brownian suspensions
,”
Phys. Fluids
21
,
093301
(
2009
).
70.
Tamayol
,
A.
, and
M.
Bahrami
, “
Transverse permeability of fibrous porous media
,”
Phys. Rev. E
83
,
046314
(
2011
).
71.
Bagheri
,
M.
, and
P.
Mirbod
, “
Effect of porous media models on rheological properties of suspensions
,”
J. Non-Newtonian Fluid Mech.
307
,
104876
(
2022
).
72.
Butler
,
J. E.
,
P. D.
Majors
, and
R. T.
Bonnecaze
, “
Observations of shear-induced particle migration for oscillatory flow of a suspension within a tube
,”
Phys. Fluids
11
,
2865
2877
(
1999
).
73.
Tripathi
,
A.
, and
A.
Acrivos
, “
Viscous resuspension in a bidensity suspension
,”
Int. J. Multiphase Flow
25
,
1
14
(
1999
).
74.
Krieger
,
I. M.
, “
Rheology of monodisperse lattices
,”
Adv. Colloid Interface Sci.
3
,
111
136
(
1972
).
75.
Ramachandran
,
A.
, and
D. T.
Leighton
, “
The influence of secondary flows induced by Normal stress differences on the shear-induced migration of particles in concentrated suspensions
,”
J. Fluid Mech.
603
,
207
243
(
2008
).
76.
Zrehen
,
A.
, and
A.
Ramachandran
, “
Demonstration of secondary currents in the pressure-driven flow of a concentrated suspension through a square conduit
,”
Phys. Rev. Lett.
110
,
018306
(
2013
).
77.
Pope
,
J. M.
, and
S.
Yao
, “
Quantitative NMR imaging of flow
,”
Concepts Magn. Reson.
5
,
281
302
(
1993
).
78.
Fukushima
,
E.
, “
Nuclear magnetic resonance as a tool to study flow
,”
Annu. Rev. Fluid Mech.
31
,
95
123
(
1999
).
79.
Potanin
,
A.
, and
N. C.
Shapley
, “
Heel estimate during pressure-driven drainage of gels from tanks
,”
Chem. Eng. Sci.
230
,
116158
(
2021
).
80.
Da Cunha
,
F. R.
, and
E. J.
Hinch
, “
Shear-induced dispersion in a dilute suspension of rough spheres
,”
J. Fluid Mech.
309
,
211
223
(
1996
).
81.
Drazer
,
G.
,
J.
Koplik
,
B.
Khusid
, and
A.
Acrivos
, “
Deterministic and stochastic behaviour of non-Brownian spheres in sheared suspensions
,”
J. Fluid Mech.
460
,
307
335
(
2002
).
82.
Stickel
,
J. J.
, and
R. L.
Powell
, “
Fluid mechanics and rheology of dense suspensions
,”
Annu. Rev. Fluid Mech.
37
,
129
149
(
2005
).
83.
Cox
,
R. G.
, and
S. G.
Mason
, “
Suspended particles in fluid flow through tubes
,”
Annu. Rev. Fluid Mech.
3
,
291
316
(
1971
).
84.
Graham
,
A. L.
,
S. A.
Altobelli
,
E.
Fukushima
,
L. A.
Mondy
, and
T. S.
Stephens
, “
Note: NMR imaging of shear-induced diffusion and structure in concentrated suspensions undergoing Couette flow
,”
J. Rheol.
35
,
191
201
(
1991
).
85.
Rosti
,
M. E.
,
P.
Mirbod
, and
L.
Brandt
, “
The impact of porous walls on the rheology of suspensions
,”
Chem. Eng. Sci.
230
,
116178
(
2021
).
You do not currently have access to this content.