Although the nonequilibrium behavior of polymer solutions is generally well understood, particularly in extensional flow, there remain several unanswered questions for dilute solutions in simple shear flow, and full quantitative agreement with experiments has not been achieved. For example, experimental viscosity data exhibit qualitative differences in shear-thinning exponents, the shear rate for the onset of shear-thinning, and high-shear Newtonian plateaus depending on polymer semiflexibility, contour length, and solvent quality. While polymer models are able to incorporate all of these effects through various spring force laws, bending potentials, excluded volume (EV) potentials, and hydrodynamic interaction (HI), the inclusion of each piece of physics has not been systematically matched to experimentally observed behavior. Furthermore, attempts to develop multiscale models (in the sense of representing an arbitrarily small or large polymer chain) which can make quantitative predictions are hindered by the lack of ability to fully match the results of bead-rod models, often used to represent a polymer chain at the Kuhn-step level, with bead-spring models, which take into account the entropic elasticity. In light of these difficulties, this work aims to develop a general model based on the so-called FENE-Fraenkel spring, originally formulated by Larson and co-workers [J. Chem. Phys. 124 (2006)], which can span the range from rigid rod to traditional entropic spring, as well as include a bending potential, EV, and HI. As we show, this model can reproduce, and smoothly move between, a wide range of previously observed polymer solution rheology in shear flow.

1.
Prabhakar
,
R.
,
J. R.
Prakash
, and
T.
Sridhar
, “
A successive fine-graining scheme for predicting the rheological properties of dilute polymer solutions
,”
J. Rheol.
48
,
1251
1278
(
2004
).
2.
Saadat
,
A.
, and
B.
Khomami
, “
Molecular based prediction of the extensional rheology of high molecular weight polystyrene dilute solutions: A hi-fidelity Brownian dynamics approach
,”
J. Rheol.
59
,
1507
1525
(
2015
).
3.
Sunthar
,
P.
, and
J. R.
Prakash
, “
Parameter free prediction of DNA conformations in elongational flow by successive fine graining
,”
Macromolecules
38
,
617
640
(
2005
).
4.
Larson
,
R. G.
, “
The rheology of dilute solutions of flexible polymers: Progress and problems
,”
J. Rheol.
49
,
1
70
(
2005
).
5.
Schroeder
,
C. M.
,
R. E.
Teixeira
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Dynamics of DNA in the flow-gradient plane of steady shear flow: Observations and simulations
,”
Macromolecules
38
,
1967
1978
(
2005
).
6.
Prakash
,
J. R.
, “
Universal dynamics of dilute and semidilute solutions of flexible linear polymers
,”
Curr. Opin. Colloid Interface Sci.
43
,
63
79
(
2019
).
7.
Schroeder
,
C. M.
, “
Single polymer dynamics for molecular rheology
,”
J. Rheol.
62
,
371
403
(
2018
).
8.
Schroeder
,
C. M.
,
R. E.
Teixeira
,
E. S.
Shaqfeh
, and
S.
Chu
, “
Characteristic periodic motion of polymers in shear flow
,”
Phys. Rev. Lett.
95
,
1
4
(
2005
).
9.
Pan
,
S.
,
D. A.
Nguyen
,
B.
Dünweg
,
P.
Sunthar
,
T.
Sridhar
, and
J. R.
Prakash
, “
Shear thinning in dilute and semidilute solutions of polystyrene and DNA
,”
J. Rheol.
62
,
845
867
(
2018
).
10.
Kailasham
,
R.
,
R.
Chakrabarti
, and
J. R.
Prakash
, “
Rheological consequences of wet and dry friction in a dumbbell model with hydrodynamic interactions and internal viscosity
,”
J. Chem. Phys.
149
,
094903
(
2018
), arXiv:1805.06779.
11.
Kailasham
,
R.
,
R.
Chakrabarti
, and
J. R.
Prakash
, “
Rouse model with fluctuating internal friction
,”
J. Rheol.
65
,
903
923
(
2021
).
12.
Kailasham
,
R.
,
R.
Chakrabarti
, and
J. R.
Prakash
, “
How important are fluctuations in the treatment of internal friction in polymers?
,”
Soft Matter
17
,
7133
7157
(
2021
).
13.
Kailasham
,
R.
,
R.
Chakrabarti
, and
J. R.
Prakash
, “Shear viscosity for finitely extensible chains with fluctuating internal friction and hydrodynamic interactions,”
J. Rheol.
67, 105–123 (2023).
14.
Petera
,
D.
, and
M.
Muthukumar
, “
Brownian dynamics simulation of bead-rod chains under shear with hydrodynamic interaction
,”
J. Chem. Phys.
111
,
7614
7623
(
1999
).
15.
Liu
,
S.
,
B.
Ashok
, and
M.
Muthukumar
, “
Brownian dynamics simulations of bead-rod-chain in simple shear flow and elongational flow
,”
Polymer
45
,
1383
1389
(
2004
).
16.
Hur
,
J. S.
,
E. S. G.
Shaqfeh
, and
R. G.
Larson
, “
Brownian dynamics simulations of single DNA molecules in shear flow
,”
J. Rheol.
44
,
713
742
(
2000
).
17.
Hsieh
,
C.-C.
, and
R. G.
Larson
, “
Modeling hydrodynamic interaction in Brownian dynamics: Simulations of extensional and shear flows of dilute solutions of high molecular weight polystyrene
,”
J. Rheol.
48
,
995
1022
(
2004
).
18.
Noda
,
I.
,
Y.
Yamada
, and
M.
Nagasawa
, “
Rate of shear dependence of the intrinsic viscosity of monodisperse polymer
,”
J. Phys. Chem.
72
,
2890
2898
(
1968
).
19.
Hua
,
C. C.
, and
M. S.
Wu
, “
Viscometric properties of dilute polystyrene/dioctyl phthalate solutions
,”
J. Polym. Sci. Part B Polym. Phys
44
,
787
794
(
2006
).
20.
Yang
,
J. T.
, “
Non-Newtonian viscosity of poly-γ-benzyl-L-glutamate solutions
,”
J. Am. Chem. Soc.
80
,
1783
1788
(
1958
).
21.
Kishbaugh
,
A. J.
, and
A. J.
McHugh
, “
A discussion of shear-thickening in bead-spring models
,”
J. Non-Newtonian Fluid Mech.
34
,
181
206
(
1990
).
22.
Ahn
,
K. H.
,
J. L.
Schrag
, and
S. J.
Lee
, “
Bead-spring chain model for the dynamics of dilute polymer solutions: Part 2. Comparisons with experimental data
,”
J. Non-Newtonian Fluid Mech.
50
,
349
373
(
1993
).
23.
Marko
,
J.
, and
E.
Siggia
, “
Statistical mechanics of supercoiled DNA
,”
Phys. Rev. E
52
,
2912
2938
(
1995
).
24.
Ryder
,
J. F.
, and
J. M.
Yeomans
, “
Shear thinning in dilute polymer solutions
,”
J. Chem. Phys.
125
,
194906
(
2006
).
25.
Hsieh
,
C. C.
,
S.
Jain
, and
R. G.
Larson
, “
Brownian dynamics simulations with stiff finitely extensible nonlinear elastic-Fraenkel springs as approximations to rods in bead-rod models
,”
J. Chem. Phys.
124
,
044911
(
2006
).
26.
Pincus
,
I.
,
A.
Rodger
, and
J. R.
Prakash
, “
Viscometric functions and rheo-optical properties of dilute polymer solutions: Comparison of FENE-Fraenkel dumbbells with rodlike models
,”
J. Non-Newtonian Fluid Mech.
285
,
104395
(
2020
).
27.
Simonson
,
T.
, and
M.
Kubista
, “
DNA orientation in shear flow
,”
Biopolymers
33
,
1225
1235
(
1993
).
28.
Pincus
,
I. M.
, “Rheology and linear dichroism of dilute solutions of flexible and semiflexible polymers in shear flow,” Ph.D. thesis (Monash University, 2022).
29.
Bird
,
R. B.
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids—Volume 2: Kinetic Theory
, 2nd ed. (
Wiley
,
New York
,
1987
).
30.
Underhill
,
P. T.
, and
P. S.
Doyle
, “
On the coarse-graining of polymers into bead-spring chains
,”
J. Non-Newtonian Fluid Mech.
122
,
3
31
(
2004
).
31.
Stewart
,
W. E.
, and
J. P.
Sorensen
, “
Hydrodynamic interaction effects in rigid dumbbell suspensions. II. Computations for steady shear flow
,”
Trans. Soc. Rheol.
16
,
1
13
(
1972
).
32.
Mochimaru
,
Y.
, “
Fast squeezing flow of viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
9
,
157
178
(
1981
).
33.
Fan
,
X. J.
, “
Viscosity, first normal-stress coefficient, and molecular stretching in dilute polymer solutions
,”
J. Non-Newtonian Fluid Mech.
17
,
125
144
(
1985
).
34.
Van Kampen
,
N. G.
, “
Statistical mechanics of trimers
,”
Appl. Sci. Res.
37
,
67
75
(
1981
).
35.
van Kampen
,
N. G.
, and
J. J.
Lodder
, “
Constraints
,”
Am. J. Phys.
52
,
419
424
(
1984
).
36.
Doyle
,
P. S.
,
E. S. G.
Shaqfeh
, and
A. P.
Gast
, “
Dynamic simulation of freely draining flexible polymers in steady linear flows
,”
J. Fluid Mech.
334
,
251
291
(
1997
).
37.
Lyulin
,
A. V.
,
D. B.
Adolf
, and
G. R.
Davies
, “
Brownian dynamics simulations of linear polymers under shear flow
,”
J. Chem. Phys.
111
,
758
771
(
1999
).
38.
Aust
,
C.
,
M.
Kröger
, and
S.
Hess
, “
Structure and dynamics of dilute polymer solutions under shear flow via nonequilibrium molecular dynamics
,”
Macromolecules
32
,
5660
5672
(
1999
).
39.
Colby
,
R. H.
,
D. C.
Boris
,
W. E.
Krause
, and
S.
Dou
, “
Shear thinning of unentangled flexible polymer liquids
,”
Rheol. Acta
46
,
569
575
(
2007
).
40.
Moghani
,
M. M.
, and
B.
Khomami
, “
Computationally efficient algorithms for Brownian dynamics simulation of long flexible macromolecules modeled as bead-rod chains
,”
Phys. Rev. Fluids
2
,
1
16
(
2017
).
41.
Sendner
,
C.
, and
R. R.
Netz
, “
Single flexible and semiflexible polymers at high shear: Non-monotonic and non-universal stretching response
,”
Eur. Phys. J. E
30
,
75
81
(
2009
).
42.
Dalal
,
I. S.
,
N.
Hoda
, and
R. G.
Larson
, “
Multiple regimes of deformation in shearing flow of isolated polymers
,”
J. Rheol.
56
,
305
332
(
2012
).
43.
Dalal
,
I. S.
,
A.
Albaugh
,
N.
Hoda
, and
R. G.
Larson
, “
Tumbling and deformation of isolated polymer chains in shearing flow
,”
Macromolecules
45
,
9493
9499
(
2012
).
44.
Dalal
,
I. S.
,
C.
Hsieh
,
A.
Albaugh
, and
R. G.
Larson
, “
Effects of excluded volume and hydrodynamic interactions on the behavior of isolated bead-rod polymer chains in shearing flow
,”
AIChE J.
60
,
1400
1412
(
2014
).
45.
Manke
,
C. W.
, and
M. C.
Williams
, “
Stress jump at the inception of shear and elongational flows of dilute polymer solutions due to internal viscosity
,”
J. Rheol.
31
,
495
510
(
1987
).
46.
Manke
,
C. W.
, and
M. C.
Williams
, “
Stress jumps predicted by the internal viscosity model with hydrodynamic interaction
,”
J. Rheol.
36
,
1261
1274
(
1992
).
47.
Kailasham
,
R.
,
R.
Chakrabarti
, and
J. R.
Prakash
, “
Wet and dry internal friction can be measured with the Jarzynski equality
,”
Phys. Rev. Res.
2
,
013331
(
2020
).
48.
Prabhakar
,
R.
, and
J. R.
Prakash
, “
Gaussian approximation for finitely extensible bead-spring chains with hydrodynamic interaction
,”
J. Rheol.
50
,
561
593
(
2006
).
49.
Öttinger
,
H. C.
, “
Gaussian approximation for Rouse chains with hydrodynamic interaction
,”
J. Chem. Phys.
90
,
463
473
(
1989
).
50.
Zylka
,
W.
, “
Gaussian approximation and Brownian dynamics simulations for Rouse chains with hydrodynamic interaction undergoing simple shear flow
,”
J. Chem. Phys.
94
,
4628
4636
(
1991
).
51.
Layec-Raphalen
,
M.-N.
, and
C.
Wolff
, “
On the shear-thickening behaviour of dilute solutions of chain macromolecules
,”
J. Non-Newtonian Fluid Mech.
1
,
159
173
(
1976
).
52.
Liu
,
T. W.
, “
Flexible polymer chain dynamics and rheological properties in steady flows
,”
J. Chem. Phys.
90
,
5826
5842
(
1989
).
53.
Schäfer
,
L.
,
Excluded Volume Effects in Polymer Solutions: As Explained by the Renormalization Group
(
Springer Science & Business Media
,
Berlin
,
2012
).
54.
Öttinger
,
H. C.
, “
Renormalization-group calculation of excluded-volume effects on the viscometric functions for dilute polymer solutions
,”
Phys. Rev. A
40
,
2664
2671
(
1989
).
55.
Prakash
,
J. R.
, “
Rouse chains with excluded volume interactions in steady simple shear flow
,”
J. Rheol.
46
,
1353
1380
(
2002
).
56.
Kumar
,
K. S.
, and
J. R.
Prakash
, “
Equilibrium swelling and universal ratios in dilute polymer solutions: Exact Brownian dynamics simulations for a delta function excluded volume potential
,”
Macromolecules
36
,
7842
7856
(
2003
).
57.
Santra
,
A.
,
K.
Kumari
,
R.
Padinhateeri
,
B.
Dünweg
, and
J. R.
Prakash
, “
Universality of the collapse transition of sticky polymers
,”
Soft Matter
15
,
7876
7887
(
2019
).
58.
Soddemann
,
T.
,
B.
Dünweg
, and
K.
Kremer
, “
A generic computer model for amphiphilic systems
,”
Eur. Phys. J. E
6
,
409
419
(
2001
).
59.
Kumar
,
K. S.
, and
J. R.
Prakash
, “
Universal consequences of the presence of excluded volume interactions in dilute polymer solutions undergoing shear flow
,”
J. Chem. Phys.
121
,
3886
3897
(
2004
).
60.
Prabhakar
,
R.
, and
J. R.
Prakash
, “
Multiplicative separation of the influences of excluded volume, hydrodynamic interactions and finite extensibility on the rheological properties of dilute polymer solutions
,”
J. Non-Newtonian Fluid Mech.
116
,
163
182
(
2004
).
61.
Yamakawa
,
H.
, Helical Wormlike Chains in Polymer Solutions, 2nd ed., edited by T. Yoshizaki author and S. O. Service (Springer, Heidelberg, 2016).
62.
Winkler
,
R. G.
, “
Semiflexible polymers in shear flow
,”
Phys. Rev. Lett.
97
,
128301
(
2006
).
63.
Winkler
,
R. G.
, “
Conformational and rheological properties of semiflexible polymers in shear flow
,”
J. Chem. Phys.
133
,
164905
(
2010
).
64.
Keentok
,
M.
,
A.
Georgescu
,
A.
Sherwood
, and
R.
Tanner
, “
The measurement of the second normal stress difference for some polymer solutions
,”
J. Non-Newtonian Fluid Mech.
6
,
303
324
(
1980
).
65.
Saadat
,
A.
, and
B.
Khomami
, “
A new bead-spring model for simulation of semi-flexible macromolecules
,”
J. Chem. Phys.
145
,
204902
(
2016
).
66.
Yamakawa
,
H.
,
Modern Theory of Polymer Solutions
(
Harper and Row
,
London
,
1971
).
67.
Andersen
,
H. C.
,
J. D.
Weeks
, and
D.
Chandler
, “
Relationship between the hard-sphere fluid and fluids with realistic repulsive forces
,”
Phys. Rev. A
4
,
1597
1607
(
1971
).
68.
Öttinger
,
H. C.
,
Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms
(
Springer-Verlag
,
Berlin
,
1996
).
69.
Prakash
,
J. R.
, and
H. C.
Öttinger
, “
Viscometric functions for a dilute solution of polymers in a good solvent
,”
Macromolecules
32
,
2028
2043
(
1999
).
70.
Fixman
,
M.
, “
Construction of Langevin forces in the simulation of hydrodynamic interaction
,”
Macromolecules
19
,
1204
1207
(
1986
).
71.
Somasi
,
M.
,
B.
Khomami
,
N. J.
Woo
,
J. S.
Hur
, and
E. S. G.
Shaqfeh
, “
Brownian dynamics simulations of bead-rod and bead-spring chains: Numerical algorithms and coarse-graining issues
,”
J. Non-Newtonian Fluid Mech.
108
,
227
255
(
2002
).
72.
Hsieh
,
C. C.
,
L.
Li
, and
R. G.
Larson
, “
Modeling hydrodynamic interaction in Brownian dynamics: Simulations of extensional flows of dilute solutions of DNA and polystyrene
,”
J. Non-Newtonian Fluid Mech.
113
,
147
191
(
2003
).
73.
Huber
,
B.
,
M.
Harasim
,
B.
Wunderlich
,
M.
Kröger
, and
A. R.
Bausch
, “
Microscopic origin of the non-newtonian viscosity of semiflexible polymer solutions in the semidilute regime
,”
ACS Macro Lett.
3
,
136
140
(
2014
).
74.
Chen
,
W.
,
J.
Chen
, and
L.
An
, “
Tumbling and tank-treading dynamics of individual ring polymers in shear flow
,”
Soft Matter
9
,
4312
4318
(
2013
).
75.
Teixeira
,
R. E.
,
H. P.
Babcock
,
E. S.
Shaqfeh
, and
S.
Chu
, “
Shear thinning and tumbling dynamics of single polymers in the flow-gradient plane
,”
Macromolecules
38
,
581
592
(
2005
).
76.
Huang
,
C. C.
,
G.
Sutmann
,
G.
Gompper
, and
R. G.
Winkler
, “
Tumbling of polymers in semidilute solution under shear flow
,”
Europhys. Lett.
93
,
54004
(
2011
).
77.
Todd
,
B. D.
, and
P. J.
Daivis
, “Statistical mechanical foundations,” in Nonequilibrium Molecular Dynamics. Theory, Algorithms and Applications. (Cambridge University Press, Cambridge, UK, 2017), pp. 31–58.
78.
Borzsák
,
I.
,
P. T.
Cummings
, and
D. J.
Evans
, “
Shear viscosity of a simple fluid over a wide range of strain rates
,”
Mol. Phys.
100
,
2735
2738
(
2002
).
79.
Prakash
,
J. R.
, “
Rouse chains with excluded volume interactions: Linear viscoelasticity
,”
Macromolecules
34
,
3396
3411
(
2001
).
80.
Wagner
,
N. J.
, and
H. C.
Öttinger
, “
Accurate simulation of linear viscoelastic properties by variance reduction through the use of control variates
,”
J. Rheol.
41
,
757
768
(
1997
).
81.
Pan
,
S.
,
D.
Ahirwal
,
D. A.
Nguyen
,
T.
Sridhar
,
P.
Sunthar
, and
J. R.
Prakash
, “
Viscosity radius of polymers in dilute solutions: Universal behavior from DNA rheology and Brownian dynamics simulations
,”
Macromolecules
47
,
7548
7560
(
2014
).
82.
Rodger
,
A.
, “
Linear dichroism spectroscopy: Techniques and applications
,”
Adv. Biomed. Spectrosc.
1
,
150
164
(
2009
).
83.
Hamprecht
,
B.
, and
H.
Kleinert
, “
End-to-end distribution function of stiff polymers for all persistence lengths
,”
Phys. Rev. E
71
,
031803
(
2005
).
84.
Pham
,
T. T.
,
P.
Sunthar
, and
J. R.
Prakash
, “
An alternative to the bead-rod model: Bead-spring chains with successive fine graining
,”
J. Non-Newtonian Fluid Mech.
149
,
9
19
(
2008
).
85.
Kumar
,
P.
, and
I. S.
Dalal
, “
Fraenkel springs as an efficient approximation to rods for Brownian dynamics simulations and modelling of polymer chains
,”
Macromol. Theory Simul.
31
,
2200008
(
2022
).
86.
Li
,
L.
, and
R. G.
Larson
, “
Comparison of Brownian dynamics simulations with microscopic and light-scattering measurements of polymer deformation under flow
,”
Macromolecules
33
,
1411
1415
(
2000
).
87.
Stoltz
,
C.
,
J. J.
de Pablo
, and
M. D.
Graham
, “
Concentration dependence of shear and extensional rheology of polymer solutions: Brownian dynamics simulations
,”
J. Rheol.
50
,
137
167
(
2006
).
88.
Harasim
,
M.
,
B.
Wunderlich
,
O.
Peleg
,
M.
Kröger
, and
A. R.
Bausch
, “
Direct observation of the dynamics of semiflexible polymers in shear flow
,”
Phys. Rev. Lett.
110
,
1
5
(
2013
).
89.
Usabiaga
,
F. B.
, and
R.
Delgado-Buscalioni
, “
Characteristic times of polymer tumbling under shear flow
,”
Macromol. Theory Simul.
20
,
466
471
(
2011
).
90.
Das
,
D.
, and
S.
Sabhapandit
, “
Accurate statistics of a flexible polymer chain in shear flow
,”
Phys. Rev. Lett.
101
,
1
4
(
2008
).
91.
Hayward
,
R. C.
, and
W. W.
Graessley
, “
Excluded volume effects in polymer solutions. 1. Dilute solution properties of linear chains in good and theta solvents
,”
Macromolecules
32
,
3502
3509
(
1999
).
92.
Pincus
,
P.
, “
Excluded volume effects and stretched polymer chains
,”
Macromolecules
9
,
386
388
(
1976
).
93.
Sasmal
,
C.
,
K.-W.
Hsiao
,
C. M.
Schroeder
, and
J.
Ravi Prakash
, “
Parameter-free prediction of DNA dynamics in planar extensional flow of semidilute solutions
,”
J. Rheol.
61
,
169
186
(
2017
).
94.
Jain
,
S.
,
I. S.
Dalal
,
N.
Orichella
,
J.
Shum
, and
R. G.
Larson
, “
Do bending and torsional potentials affect the unraveling dynamics of flexible polymer chains in extensional or shear flows?
,”
Chem. Eng. Sci.
64
,
4566
4571
(
2009
).
95.
Winkler
,
R. G.
,
P.
Reineker
, and
L.
Harnau
, “
Models and equilibrium properties of stiff molecular chains
,”
J. Chem. Phys.
101
,
8119
8129
(
1994
).
96.
Harnau
,
L.
,
R. G.
Winkler
, and
P.
Reineker
, “
Dynamic properties of molecular chains with variable stiffness
,”
J. Chem. Phys.
102
,
7750
7757
(
1995
).
97.
Nikoubashman
,
A.
, and
M. P.
Howard
, “
Equilibrium dynamics and shear rheology of semiflexible polymers in solution
,”
Macromolecules
50
,
8279
8289
(
2017
).
98.
Mead
,
D. W.
, and
R. G.
Larson
, “
Rheooptical study of isotropic solutions of stiff polymers
,”
Macromolecules
23
,
2524
2533
(
1990
).
99.
Koslover
,
E. F.
, and
A. J.
Spakowitz
, “
Multiscale dynamics of semiflexible polymers from a universal coarse-graining procedure
,”
Phys. Rev. E
90
,
1
5
(
2014
).
100.
Underhill
,
P. T.
, and
P. S.
Doyle
, “
Alternative spring force law for bead-spring chain models of the worm-like chain
,”
J. Rheol.
50
,
513
529
(
2006
).
101.
Gitlab
, “Single-chain Brownian dynamics,” Molecular Rheology Group Gitlab Repository, https://gitlab.erc.monash.edu.au/jagadeeshan-molecular-rheology/single-chain (
2022
).
102.
Sunthar
,
P.
, and
J. R.
Prakash
, “
Dynamic scaling in dilute polymer solutions: The importance of dynamic correlations
,”
Eur. Lett.
75
,
77
83
(
2006
).
103.
Fixman
,
M.
, “
Inclusion of hydrodynamic interaction in polymer dynamical simulations
,”
Macromolecules
14
,
1710
1717
(
1981
).
You do not currently have access to this content.