The present work investigates nonlinear behavior in large amplitude oscillatory shear (LAOS) of unsaturated wet granular materials using pressure-imposed rheometric measurements that enable to explore how the material properties characterizing the flow response depend on both strain amplitude and frequency of deformation. Away from the quasistatic limit, we show that the energy dissipated per unit volume in a single LAOS cycle, which can be visualized by the area enclosed by the Lissajous curve of stress versus strain, is an increasing function of the viscosity of the wetting liquid and is also influenced by the reduced pressure (comparing the cohesive to confining forces) and the frequency. Introducing the inertial number I and the viscous number Iv as previously done, it is shown that the influence of surface tension, viscosity, and driving frequency can be captured by plotting the dissipated energy per unit volume versus the viscous number: a good collapse is obtained. It is shown that an increase in liquid content shifts the whole curve of the dissipated energy upwards, indicating that the overall dissipation mechanism does not change with liquid content, only the energy dissipation related to the internal structure and its breakdown changes.

1.
Fall
,
A.
,
B.
Weber
,
M.
Pakpour
,
N.
Lenoir
,
N.
Shahidzadeh
,
J.
Fiscina
,
C.
Wagner
, and
D.
Bonn
, “
Sliding friction on wet and dry sand
,”
Phys. Rev. Lett.
112
,
175502
(
2014
).
2.
Aliasgari
,
M.
,
N.
Maleki-Jirsaraei
, and
S.
Rouhani
, “The effect of liquid viscosity on sliding friction coefficient of wet granular materials,” in Powders & Grains 2021–9th International Conference on Micromechanics of Granular Media, EPJ Web of Conferences Vol. 249 (EDP Sciences, Les Ulis Cedex A, France, 2021), p. 08003.
3.
Albert
,
R.
,
I.
Albert
,
D.
Hornbaker
,
P.
Schiffer
, and
A.-L.
Barabási
, “
Maximum angle of stability in wet and dry spherical granular media
,”
Phys. Rev. E
56
,
R6271
(
1997
).
4.
Barabási
,
A.-L.
,
R.
Albert
, and
P.
Schiffer
, “
The physics of sand castles: Maximum angle of stability in wet and dry granular media
,”
Physica A
266
,
366
371
(
1999
).
5.
Halsey
,
T. C.
, and
A. J.
Levine
, “
How sandcastles fall
,”
Phys. Rev. Lett.
80
,
3141
(
1998
).
6.
Pakpour
,
M.
,
M.
Habibi
,
P.
Møller
, and
D.
Bonn
, “
How to construct the perfect sandcastle
,”
Sci. Rep.
2
,
1
3
(
2012
).
7.
Nowak
,
S.
,
A.
Samadani
, and
A.
Kudrolli
, “
Maximum angle of stability of a wet granular pile
,”
Nat. Phys.
1
,
50
52
(
2005
).
8.
Bocquet
,
L.
,
E.
Charlaix
, and
F.
Restagno
, “
Physics of humid granular media
,”
C. R. Phys.
3
,
207
215
(
2002
).
9.
Nase
,
S. T.
,
W. L.
Vargas
,
A. A.
Abatan
, and
J.
McCarthy
, “
Discrete characterization tools for cohesive granular material
,”
Powder Technol.
116
,
214
223
(
2001
).
10.
Bocquet
,
L.
,
E.
Charlaix
,
S.
Ciliberto
, and
J.
Crassous
, “
Moisture-induced ageing in granular media and the kinetics of capillary condensation
,”
Nature
396
,
735
737
(
1998
).
11.
Richefeu
,
V.
,
M. S.
El Youssoufi
, and
F.
Radjai
, “
Shear strength properties of wet granular materials
,”
Phys. Rev. E
73
,
051304
(
2006
).
12.
Badetti
,
M.
,
A.
Fall
,
F.
Chevoir
, and
J.-N.
Roux
, “
Shear strength of wet granular materials: Macroscopic cohesion and effective stress
,”
Eur. Phys. J. E
41
,
1
16
(
2018
).
13.
Scheel
,
M.
,
R.
Seemann
,
M.
Brinkmann
,
M.
Di Michiel
,
A.
Sheppard
,
B.
Breidenbach
, and
S.
Herminghaus
, “
Morphological clues to wet granular pile stability
,”
Nat. Mater.
7
,
189
193
(
2008
).
14.
Bruchon
,
J.-F.
,
J.-M.
Pereira
,
M.
Vandamme
,
N.
Lenoir
,
P.
Delage
, and
M.
Bornert
, “
Full 3D investigation and characterisation of capillary collapse of a loose unsaturated sand using X-ray CT
,”
Granular Mater.
15
,
783
800
(
2013
).
15.
Badetti
,
M.
,
A.
Fall
,
D.
Hautemayou
,
F.
Chevoir
,
P.
Aimedieu
,
S.
Rodts
, and
J.-N.
Roux
, “
Rheology and microstructure of unsaturated wet granular materials: Experiments and simulations
,”
J. Rheol.
62
,
1175
1186
(
2018
).
16.
Khamseh
,
S.
,
J.-N.
Roux
, and
F.
Chevoir
, “
Flow of wet granular materials: A numerical study
,”
Phys. Rev. E
92
,
022201
(
2015
).
17.
GDR MiDi
, “
On dense granular flows
,”
Eur. Phys. J. E
14
,
341
365
(
2004
).
18.
Da Cruz
,
F.
,
S.
Emam
,
M.
Prochnow
,
J.-N.
Roux
, and
F.
Chevoir
, “
Rheophysics of dense granular materials: Discrete simulation of plane shear flows
,”
Phys. Rev. E
72
,
021309
(
2005
).
19.
Rognon
,
P. G.
,
J.-N.
Roux
,
M.
Naaim
, and
F.
Chevoir
, “
Dense flows of cohesive granular materials
,”
J. Fluid Mech.
596
,
21
47
(
2008
).
20.
Berger
,
N.
,
E.
Azéma
,
J.-F.
Douce
, and
F.
Radjai
, “
Scaling behaviour of cohesive granular flows
,”
Europhys. Lett.
112
,
64004
(
2016
).
21.
Vo
,
T. T.
,
S.
Nezamabadi
,
P.
Mutabaruka
,
J.-Y.
Delenne
, and
F.
Radjai
, “
Additive rheology of complex granular flows
,”
Nat. Commun.
11
,
1
8
(
2020
).
22.
Cassar
,
C.
,
M.
Nicolas
, and
O.
Pouliquen
, “
Submarine granular flows down inclined planes
,”
Phys. Fluids
17
,
103301
(
2005
).
23.
Trulsson
,
M.
,
B.
Andreotti
, and
P.
Claudin
, “
Transition from the viscous to inertial regime in dense suspensions
,”
Phys. Rev. Lett.
109
,
118305
(
2012
).
24.
Amarsid
,
L.
,
J.-Y.
Delenne
,
P.
Mutabaruka
,
Y.
Monerie
,
F.
Perales
, and
F.
Radjai
, “
Viscoinertial regime of immersed granular flows
,”
Phys. Rev. E
96
,
012901
(
2017
).
25.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
26.
Merger
,
D.
, “Large amplitude oscillatory shear investigations of colloidal systems: Experiments and constitutive model predictions,” Ph.D. thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, 2015.
27.
Ong
,
E. Y.
,
M.
Ramaswamy
,
R.
Niu
,
N. Y.
Lin
,
A.
Shetty
,
R. N.
Zia
,
G. H.
McKinley
, and
I.
Cohen
, “
Stress decomposition in LAOS of dense colloidal suspensions
,”
J. Rheol.
64
,
343
351
(
2020
).
28.
Sandoval
,
A. J.
,
M.
Fernández
,
O.
Sanz
,
A.
Santamaría
,
E.
Penott-Chang
, and
A. J.
Müller
, “
Large amplitude oscillatory shear (LAOS) behavior of chocolates of different compositions
,”
J. Rheol.
66
,
859
879
(
2022
).
29.
Boyer
,
F.
,
É.
Guazzelli
, and
O.
Pouliquen
, “
Unifying suspension and granular rheology
,”
Phys. Rev. Lett.
107
,
188301
(
2011
).
30.
Fall
,
A.
,
G.
Ovarlez
,
D.
Hautemayou
,
C.
Mézière
,
J.-N.
Roux
, and
F.
Chevoir
, “
Dry granular flows: Rheological measurements of the μ (i)-rheology
,”
J. Rheol.
59
,
1065
1080
(
2015
).
31.
Yazar
,
G.
,
Ö.
Çağlar Duvarcı
,
M.
Yıldırım Ertürk
, and
J. L.
Kokini
, “LAOS (large amplitude oscillatory shear) applications for semisolid foods,” in Rheology of Semisolid Foods, edited by H. S. Joyner (Springer International Publishing, Cham, 2019), pp. 97–131.
32.
Rouyer
,
F.
,
S.
Cohen-Addad
, and
R.
Höhler
, “
Is the yield stress of aqueous foam a well-defined quantity?
,”
Colloids Surf., A
263
,
111
116
(
2005
).
33.
Agnolin
,
I.
, and
J.-N.
Roux
, “
Internal states of model isotropic granular packings. III. Elastic properties
,”
Phys. Rev. E
76
,
061304
(
2007
).
34.
Møller
,
P. C.
, and
D.
Bonn
, “
The shear modulus of wet granular matter
,”
Europhys. Lett.
80
,
38002
(
2007
).
35.
Alarcon
,
H.
,
J.-C.
Géminard
, and
F.
Melo
, “
Effect of cohesion and shear modulus on the stability of a stretched granular layer
,”
Phys. Rev. E
86
,
061303
(
2012
).
36.
Gorlier
,
F.
,
Y.
Khidas
,
A.
Fall
, and
O.
Pitois
, “
Optimal strengthening of particle-loaded liquid foams
,”
Phys. Rev. E
95
,
042604
(
2017
).
37.
Ewoldt
,
R. H.
,
P.
Winter
,
J.
Maxey
, and
G. H.
McKinley
, “
Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials
,”
Rheol. Acta
49
,
191
212
(
2010
).
38.
Rogers
,
S. A.
,
B. M.
Erwin
,
D.
Vlassopoulos
, and
M.
Cloitre
, “
Oscillatory yielding of a colloidal star glass
,”
J. Rheol.
55
,
733
752
(
2011
).
39.
van der Vaart
,
K.
,
Y.
Rahmani
,
R.
Zargar
,
Z.
Hu
,
D.
Bonn
, and
P.
Schall
, “
Rheology of concentrated soft and hard-sphere suspensions
,”
J. Rheol.
57
,
1195
1209
(
2013
).
40.
Park
,
J. D.
, and
S. A.
Rogers
, “
The transient behavior of soft glassy materials far from equilibrium
,”
J. Rheol.
62
,
869
888
(
2018
).
41.
Rogers
,
S. A.
, and
M. P.
Lettinga
, “
A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models
,”
J. Rheol.
56
,
1
25
(
2012
).
You do not currently have access to this content.