The design of flow processes to build a macroscopic bulk material from rod-shaped colloidal particles has drawn considerable attention from researchers and engineers. Here, we systematically explore and show that the characteristic strain rate of the flow universally determines the orientational ordering of colloidal rods. We employed the fluctuating lattice Boltzmann method by simulating hydrodynamically interacting Brownian rods in a Newtonian liquid moving under various flow types. By modeling a rigid rod as a chain of nonoverlapping solid spheres with constraint forces and torque, we elucidate rigid rod dynamics with an aspect ratio (L/d) either 4.1 or 8.1 under various rotational Péclet number (Per) conditions. The dynamics of colloidal rods in dilute (nL3=0.05) and semidilute suspensions (nL3=1.1) were simulated for a wide range of Per (0.01<Per<1000) under shear flows including Couette and Poiseuille flows in a planar channel geometry, and an extensional and mixed-kinematics flow in a periodic four-roll mill geometry, where n is the number density, and d and L are the diameter and length of the rod, respectively. By evaluating the degree of orientational alignment of rods along the flows, we observed that there is no significant difference between flow types, and the flow-induced ordering of rods depends on the variation of Per up to moderate Per (Per<100). At a high Per (Per>100), the degree of orientational ordering is prone to diversify depending on the flow type. The spatial inhomogeneity of the strain-rate distribution leads to a substantial decrease in the orientational alignment at high Per.

1.
Solomon
,
M. J.
, and
P. T.
Spicer
, “
Microstructural regimes of colloidal rod suspensions, gels, and glasses
,”
Soft Matter
6
,
1391
1400
(
2010
).
2.
Mittal
,
N.
,
F.
Ansari
,
V. K.
Gowda
,
C.
Brouzet
,
P.
Chen
,
P. T.
Larsson
,
S. V.
Roth
,
F.
Lundell
,
L.
Wagberg
,
N. A.
Kotov
, and
L. D.
Söderberg
, “
Multiscale control of nanocellulose assembly: Transferring remarkable nanoscale fibril mechanics to macroscale fibers
,”
ACS Nano
12
,
6378
6388
(
2018
).
3.
Gowda
,
V. K.
,
T.
Rosén
,
S. V.
Roth
,
L. D.
Söderberg
, and
F.
Lundell
, “
Nanofibril alignment during assembly revealed by an X-ray scattering-based digital twin
,”
ACS Nano
16
,
2120
2132
(
2022
).
4.
Xu
,
Y.
,
A.
Atrens
, and
J. R.
Stokes
, “
A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour
,”
Adv. Colloid Interface Sci.
275
,
102076
(
2020
).
5.
Butler
,
J. E.
, and
B.
Snook
, “
Microstructural dynamics and rheology of suspensions of rigid fibers
,”
Annu. Rev. Fluid Mech.
50
,
299
318
(
2018
).
6.
Jeffery
,
G. B.
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. Lond. A
102
,
161
179
(
1922
).
7.
Hinch
,
E. J.
, and
L. G.
Leal
, “
The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles
,”
J. Fluid Mech.
52
,
683
712
(
1972
).
8.
Brenner
,
H.
, “
Rheology of a dilute suspension of axisymmetric Brownian particles
,”
Intl. J. Multiphase Flow
1
,
195
341
(
1974
).
9.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon Press
,
Oxford
,
1986
).
10.
Yamane
,
Y.
,
Y.
Kaneda
, and
M.
Doi
, “
Numerical simulation of semi-dilute suspensions of rodlike particles in shear flow
,”
J. Non-Newtonian Fluid Mech.
54
,
405
421
(
1994
).
11.
Poole
,
R. J.
, “
Three-dimensional viscoelastic instabilities in microchannels
,”
J. Fluid Mech.
870
,
1
4
(
2019
).
12.
Hodgkinson
,
R.
,
S. T.
Chaffin
,
W. B. J.
Zimmerman
,
C.
Holland
, and
J. R.
Howse
, “
Extensional flow affecting shear viscosity: Experimental evidence and comparison to models
,”
J. Rheol.
66
,
793
809
(
2022
).
13.
Corona
,
P. T.
,
N.
Ruocco
,
K. M.
Weigandt
,
L. G.
Leal
, and
M. E.
Helgeson
, “
Probing flow-induced nanostructure of complex fluids in arbitrary 2D flows using a fluidic four-roll mill (FFoRM)
,”
Sci. Rep.
8
,
15559
(
2018
).
14.
Calabrese
,
V.
,
S. J.
Haward
, and
A. Q.
Shen
, “
Effects of shearing and extensional flows on the alignment of colloidal rods
,”
Macromolecules
54
,
4176
4185
(
2021
).
15.
Parsa
,
S.
,
J. S.
Guasto
,
M.
Kishore
,
N. T.
Ouellette
,
J. P.
Gollub
, and
G. A.
Voth
, “
Rotation and alignment of rods in two-dimensional chaotic flow
,”
Phys. Fluids
23
,
043302
(
2011
).
16.
Löwen
,
H.
, “
Brownian dynamics of hard spherocylinders
,”
Phys. Rev. E
50
,
1232
1242
(
1994
).
17.
Tao
,
Y.-G.
,
W. K.
den Otter
,
J. T.
Padding
,
J. K. G.
Dhont
, and
W. J.
Briels
, “
Brownian dynamics simulations of the self- and collective rotational diffusion coefficients of rigid long thin rods
,”
J. Chem. Phys.
122
,
244903
(
2005
).
18.
Switzer III
,
L. H.
, and
D. J.
Klingenberg
, “
Rheology of sheared flexible fiber suspensions via fiber-level simulations
,”
J. Rheol.
47
,
759
778
(
2003
).
19.
Chen
,
J.-Y.
,
Z.
Li
,
I.
Szlufarska
, and
D. J.
Klingenberg
, “
Rheology and structure of suspensions of spherocylinders via Brownian dynamics simulations
,”
J. Rheol.
65
,
273
288
(
2021
).
20.
Sundararajakumar
,
R. R.
, and
D. L.
Koch
, “
Structure and properties of sheared fiber suspensions with mechanical contacts
,”
J. Non-Newtonian Fluid Mech.
73
,
205
239
(
1997
).
21.
Durlofsky
,
L.
,
J. F.
Brady
, and
G.
Bossis
, “
Dynamic simulation of hydrodynamically interacting particles
,”
J. Fluid Mech.
180
,
21
49
(
1987
).
22.
Yang
,
Y.
, and
M. A.
Bevan
, “
Interfacial colloidal rod dynamics: Coefficients, simulations, and analysis
,”
J. Chem. Phys.
147
,
054902
(
2017
).
23.
Ladd
,
A. J. C.
, and
R.
Verberg
, “
Lattice–Boltzmann simulations of particle-fluid suspensions
,”
J. Stat. Phys.
104
,
1191
1251
(
2001
).
24.
Dünweg
,
B.
,
U. D.
Schiller
, and
A. J. C.
Ladd
, “
Statistical mechanics of the fluctuating Lattice Boltzmann equation
,”
Phys. Rev. E
76
,
036704
(
2007
).
25.
Chun
,
B.
,
J. S.
Park
,
H. W.
Jung
, and
Y.-Y.
Won
, “
Shear-induced particle migration and segregation in non-Brownian bidisperse suspensions under planar PPoiseuille flow
,”
J. Rheol.
63
,
437
453
(
2019
).
26.
Chun
,
B.
, and
H. W.
Jung
, “
Inertia-and shear-induced inhomogeneities in non-Brownian mono and bidisperse suspensions under wall-bounded linear shear flow
,”
Phys. Fluids
33
,
053318
(
2021
).
27.
Park
,
J. S.
,
J.
Yun
,
B.
Chun
, and
H. W.
Jung
, “
Mild stratification in drying films of colloidal mixtures
,”
Soft Matter
18
,
3487
3497
(
2022
).
28.
Corona
,
P. T.
,
B.
Berke
,
M.
Guizar-Sicairos
,
L. G.
Leal
,
M.
Liebi
, and
M. E.
Helgeson
, “
Fingerprinting soft material nanostructure response to complex flow histories
,”
Phys. Rev. Mater.
6
,
045603
(
2022
).
29.
Gauger
,
E.
, and
H.
Stark
, “
Numerical study of a microscopic artificial swimmer
,”
Phys. Rev. E
74
,
021907
(
2006
).
30.
Yamamoto
,
S.
, and
T.
Matsuoka
, “
A method for dynamic simulation of rigid and flexible fibers in a flow field
,”
J. Chem. Phys.
98
,
644
650
(
1993
).
31.
Haeri
,
M.
,
B. E.
Knox
, and
A.
Ahmadi
, “
Modeling the flexural rigidity of rod photoreceptors
,”
Biophys. J.
104
,
300
312
(
2013
).
32.
Landau
,
L. D.
, and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
New York
,
1959
).
33.
Ladd
,
A. J. C.
, “
Numerical simulations of particulate suspensions via a discretized Boltzmann equation. 1. Theoretical foundation
,”
J. Fluid Mech.
271
,
285
309
(
1994
).
34.
Dünweg
,
B.
, and
A. J. C.
Ladd
, “
Lattice Boltzmann simulations of soft matter systems
,”
Adv. Polym. Sci.
221
,
89
166
(
2009
).
35.
Nguyen
,
N. Q.
, and
A. J. C.
Ladd
, “
Lubrication corrections for Lattice–Boltzmann simulations of particle suspensions
,”
Phys. Rev. E
66
,
046708
(
2002
).
36.
Ladd
,
A. J. C.
, “
Lattice–Boltzmann methods for suspensions of solid particles
,”
Mol. Phys.
113
,
2531
2537
(
2015
).
37.
Ginzburg
,
I.
, and
D.
d’Humieres
, “
Multireflection boundary conditions for Lattice–Boltzmann models
,”
Phys. Rev. E
68
,
066614
(
2003
).
38.
Chun
,
B.
and
A. J. C.
Ladd
, “
Interpolated boundary condition for Lattice–Boltzmann simulations of flows in narrow gaps
,”
Phys. Rev. E
75
,
066705
(
2007
).
39.
Usov
,
I.
,
G.
Nyström
,
J.
Adamcik
,
S.
Handschin
,
C.
Schütz
,
A.
Fall
,
L.
Bergström
, and
R.
Mezzenga
, “
Understanding nanocellulose chirality and structure–properties relationship at the single fibril level
,”
Nat. Commun.
6
,
1
11
(
2015
).
40.
Mukhija
,
D.
, and
M. J.
Solomon
, “
Translational and rotational dynamics of colloidal rods by direct visualization with confocal microscopy
,”
J. Colloid Interface Sci.
314
,
98
106
(
2007
).
41.
Taylor
,
G. I.
, “
The formation of emulsions in definable fields of flow
,”
Proc. Roy. Soc. Lond. A
146
,
501
523
(
1934
).
42.
Mackley
,
M. R.
, “
Flow singularities, polymer chain extension and hydrodynamic instabilities
,”
J. Non-Newtonian Fluid Mech.
4
,
111
136
(
1978
).
43.
Winter
,
H. H.
,
C. W.
Macosko
, and
K. E.
Bennett
, “
Orthogonal stagnation flow, a framework for steady extensional flow experiments
,”
Rheol. Acta
18
,
323
334
(
1979
).
44.
Fuller
,
G. G.
, and
L. G.
Leal
, “
Flow birefringence of dilute polymer solutions in two-dimensional flows
,”
Rheol. Acta
19
,
580
600
(
1980
).
45.
Fuller
,
G. G.
, and
L. G.
Leal
, “
Flow birefringence of concentrated polymer solutions in two-dimensional flows
,”
J. Polym. Sci.
19
,
557
587
(
1981
).
46.
Ng
,
R. C.-Y.
, and
L. G.
Leal
, “
Concentration effects on birefringence and flow modification of semidilute polymer solutions in extensional flows
,”
J. Rheol.
37
,
443
468
(
1993
).
47.
Yavich
,
D.
,
D. W.
Mead
,
J. P.
Oberhauser
, and
L. G.
Leal
, “
Experimental studies of an entangled polystyrene solution in steady state mixed type flows
,”
J. Rheol.
42
,
671
695
(
1998
).
48.
Lee
,
J. S.
,
R.
Dylla-Spears
,
N. P.
Teclemariam
, and
S. J.
Muller
, “
Microfluidic four-roll mill for all flow types
,”
Appl. Phys. Lett.
90
,
074103
(
2007
).
49.
Brandley
,
E.
,
E. S.
Greenhalgh
,
M. S. P.
Shaffer
, and
Q.
Li
, “
Mapping carbon nanotube orientation by fast Fourier transform of scanning electron micrographs
,”
Carbon
137
,
78
87
(
2018
).
50.
Huang
,
G.-R.
,
J. M.
Carrillo
,
Y.
Wang
,
C.
Do
,
L.
Porcar
,
B.
Sumpter
, and
W.-R.
Chen
, “
An exact inversion method for extracting orientation ordering by small-angle scattering
,”
Phys. Chem. Chem. Phys.
23
,
4120
4132
(
2021
).
51.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000550 for movies 1 and 2 with movie captions for visualizing the LB simulations of the dynamics of colloidal rods in four different types of flows.
52.
Kumar
,
G.
, and
G.
Natale
, “
Settling dynamics of two spheres in a suspension of Brownian rods
,”
Phys. Fluids
31
,
073104
(
2019
).
53.
Folgar
,
F.
, and
C. L.
Tucker III
, “
Orientation behavior of fibers in concentrated suspensions
,”
J. Reinf. Plastics Composites
3
,
98
119
(
1984
).
54.
Stover
,
C. A.
, and
C.
Cohen
, “
The motion of rodlike particles in the pressure-driven flow between two flat plates
,”
Rheol. Acta
29
,
192
203
(
1990
).
55.
Park
,
J.
, and
J. E.
Butler
, “
Inhomogeneous distribution of a rigid fibre undergoing rectilinear flow between parallel walls at high peclet numbers
,”
J. Fluid Mech.
630
,
267
298
(
2009
).
56.
Strednak
,
S.
,
S.
Shaikh
,
J. E.
Butler
, and
É.
Guazzelli
, “
Shear-induced migration and orientation of rigid fibers in an oscillatory pipe flow
,”
Phys. Rev. Fluids
3
,
091301
(
2018
).
57.
Batchelor
,
G. K.
, “
Slender-body theory for particles of arbitrary cross-section in Stokes flow
,”
J. Fluid Mech.
44
,
419
440
(
1970
).

Supplementary Material

You do not currently have access to this content.