Shear banding in entangled polymer solutions is an elusive phenomenon in polymer rheology. One recently proposed mechanism for the existence of banded velocity profiles in entangled polymer solutions stems from a coupling of the flow to banded concentration profiles. Recent work [Burroughs et al., Phys. Rev. Lett.126, 207801 (2021)] provided experimental evidence for the development of large gradients in concentration across the fluid. Here, a more systematic investigation is reported of the transient and steady-state banded velocity and concentration profiles of entangled polybutadiene in dioctyl phthalate solutions as a function of temperature (T), number of entanglements (Z), and applied shear rate (Wiapp), which control the susceptibility of the fluid to unstable flow-concentration coupling. The results are compared to a two-fluid model that accounts for coupling between elastic and osmotic polymer stresses, and a strong agreement is found between model predictions and measured concentration profiles. The interface locations and widths of the time-averaged, steady-state velocity profiles are quantified from high-order numerical derivatives of the data. At high levels of entanglement and large Wiapp, a significant wall slip is observed at both inner and outer surfaces of the flow geometry but is not a necessary criterion for a nonhomogeneous flow. Furthermore, the transient evolution of flow profiles for large Z indicate transitions from curved to “stair-stepped” and, ultimately, a banded steady state. These observed transitions provide detailed evidence for shear-induced demixing as a mechanism of shear banding in polymer solutions.

1.
Denn
,
M. M.
, “
Extrusion instabilities and wall slip
,”
Annu. Rev. Fluid Mech.
33
,
265
287
(
2001
).
2.
Divoux
,
T.
,
M. A.
Fardin
,
S.
Manneville
, and
S.
Lerouge
, “
Shear banding of complex fluids
,”
Annu. Rev. Fluid Mech.
48
,
81
103
(
2016
).
3.
Olmsted
,
P. D.
, “
Perspectives on shear banding in complex fluids
,”
Rheol. Acta
47
,
283
300
(
2008
).
4.
Germann
,
N.
, “
Shear banding in semidilute entangled polymer solutions
,”
Curr. Opin. Colloid Interface Sci.
39
,
1
10
(
2019
).
5.
Menezes
,
E. V.
, and
W. W.
Graessley
, “
Nonlinear rheological behavior of polymer systems for several shear-flow histories
,”
J. Polym. Sci. Part B Polym. Phys.
20
,
1817
1833
(
1982
).
6.
Hu
,
Y. T.
,
L.
Wilen
,
A.
Philips
, and
A.
Lips
, “
Is the constitutive relation for entangled polymers monotonic?
,”
J. Rheol.
51
,
275
295
(
2007
).
7.
Marrucci
,
G.
, “
Dynamics of entanglements: A nonlinear model consistent with the Cox-merz rule I
,”
J. Nonnewton. Fluid Mech.
62
,
279
289
(
1996
).
8.
Mead
,
D. W.
,
R. G.
Larson
, and
M.
Doi
, “
A molecular theory for fast flows of entangled polymers
,”
Macromolecules
31
,
7895
7914
(
1998
).
9.
Milner
,
S. T.
,
T. C. B.
McLeish
, and
A. E.
Likhtman
, “
Microscopic theory of convective constraint release
,”
J. Rheol.
45
,
539
563
(
2001
).
10.
Graham
,
R. S.
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
1200
(
2003
).
11.
Rangel-Nafaile
,
C.
,
A. B.
Metzner
, and
K. F.
Wissbrun
, “
Analysis of stress-induced phase separations in polymer solutions
,”
Macromolecules
17
,
1187
1195
(
1984
).
12.
Wu
,
X. L.
,
D. J.
Pine
, and
P. K.
Dixon
, “
Enhanced concentration fluctuations in polymer solutions under shear flow
,”
Phys. Rev. Lett.
66
,
2408
2411
(
1991
).
13.
Dixon
,
P. K.
,
D. J.
Pine
, and
X. L.
Wu
, “
Mode selection in the dynamics of sheared polymer solutions
,”
Phys. Rev. Lett.
68
,
2239
2242
(
1992
).
14.
van Egmond
,
J. W.
,
D. E.
Werner
, and
G. G.
Fuller
, “
Time-dependent small-angle light scattering of shear-induced concentration fluctuations in polymer solutions
,”
J. Chem. Phys.
96
,
7742
7757
(
1992
).
15.
Kume
,
T.
,
T.
Hashimoto
,
T.
Takahashi
, and
G. G.
Fuller
, “
Rheo-optical studies of shear-induced structures in semidilute polystyrene solutions
,”
Macromolecules
30
,
7232
7236
(
1997
).
16.
Burroughs
,
M. C.
,
A. M.
Shetty
,
L. G.
Leal
, and
M. E.
Helgeson
, “
Coupled nonhomogeneous flows and flow-enhanced concentration fluctuations during startup shear of entangled polymer solutions
,”
Phys. Rev. Fluids
5
,
043301
(
2020
).
17.
Cromer
,
M.
,
M. C.
Villet
,
G. H.
Fredrickson
, and
L. G.
Leal
, “
Shear banding in polymer solutions
,”
Phys. Fluids
25
,
051703
(
2013
).
18.
Cromer
,
M.
,
G. H.
Fredrickson
, and
L. G.
Leal
, “
A study of shear banding in polymer solutions
,”
Phys. Fluids
26
,
063101
(
2014
).
19.
Peterson
,
J. D.
,
M.
Cromer
,
G. H.
Fredrickson
, and
L.
Gary Leal
, “
Shear banding predictions for the two-fluid rolie-poly model
,”
J. Rheol.
60
,
927
951
(
2016
).
20.
Li
,
Y.
,
M.
Hu
,
G. B.
McKenna
,
C. J.
Dimitriou
,
G. H.
McKinley
,
R. M.
Mick
,
D. C.
Venerus
, and
L. A.
Archer
, “
Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions
,”
J. Rheol.
57
,
1411
1428
(
2013
).
21.
Wang
,
S.-Q.
,
G.
Liu
,
S.
Cheng
,
P. E.
Boukany
,
Y.
Wang
, and
X.
Li
, “
Letter to the editor sufficiently entangled polymers do show shear strain localization at high enough weissenberg numbers
,”
J. Rheol.
58
,
1059
1069
(
2014
).
22.
Li
,
Y.
,
M.
Hu
,
G. B.
McKenna
,
C. J.
Dimitriou
,
G. H.
McKinley
,
R. M.
Mick
,
D. C.
Venerus
, and
L. A.
Archer
, “
Response to: Sufficiently entangled polymers do show shear strain localization at high enough weissenberg numbers
,”
J. Rheol.
58
,
1071
1082
(
2014
).
23.
Li
,
Y.
, and
G. B.
McKenna
, “
Startup shear of a highly entangled polystyrene solution deep into the nonlinear viscoelastic regime
,”
Rheol. Acta
54
,
771
777
(
2015
).
24.
Boukany
,
P. E.
, and
S.-Q.
Wang
, “
A correlation between velocity profile and molecular weight distribution in sheared entangled polymer solutions
,”
J. Rheol.
51
,
217
233
(
2007
).
25.
Boukany
,
P. E.
, and
S.-Q.
Wang
, “
Exploring the transition from wall slip to bulk shearing banding in well-entangled DNA solutions
,”
Soft Matter
5
,
780
789
(
2009
).
26.
Boukany
,
P. E.
,
S.-Q.
Wang
,
S.
Ravindranath
, and
L. J.
Lee
, “
Shear banding in entangled polymers in the micron scale gap: A confocal-rheoscopic study
,”
Soft Matter
11
,
8058
8068
(
2015
).
27.
Hayes
,
K. A.
,
M. R.
Buckley
,
H.
Qi
,
I.
Cohen
, and
L. A.
Archer
, “
Constitutive curve and velocity profile in entangled polymers during start-up of steady shear flow
,”
Macromolecules
43
,
4412
4417
(
2010
).
28.
Wang
,
S.-Q.
,
S.
Ravindranath
, and
P. E.
Boukany
, “
Homogeneous shear, wall slip, and shear banding of entangled polymeric liquids in simple-shear rheometry: A roadmap of nonlinear rheology
,”
Macromolecules
44
,
183
190
(
2011
).
29.
Hayes
,
K. A.
,
M. R.
Buckley
,
I.
Cohen
, and
L. A.
Archer
, “
High resolution shear profile measurements in entangled polymers
,”
Phys. Rev. Lett.
101
,
218301
(
2008
).
30.
Cheng
,
P.
,
M. C.
Burroughs
,
L. G.
Leal
, and
M. E.
Helgeson
, “
Distinguishing shear banding from shear thinning in flows with a shear stress gradient
,”
Rheol. Acta
56
,
1007
1032
(
2017
).
31.
Burroughs
,
M. C.
,
Y.
Zhang
,
A. M.
Shetty
,
C. M.
Bates
,
L. G.
Leal
, and
M. E.
Helgeson
, “
Flow-induced concentration nonuniformity and shear banding in entangled polymer solutions
,”
Phys. Rev. Lett.
126
,
207801
(
2021
).
32.
Fielding
,
S. M.
, and
P. D.
Olmsted
, “
Early stage kinetics in a unified model of shear-induced demixing and mechanical shear banding instabilities
,”
Phys. Rev. Lett.
90
,
224501
(
2003
).
33.
Fielding
,
S. M.
, and
P. D.
Olmsted
, “
Kinetics of the shear banding instability in startup flows
,”
Phys. Rev. E
68
,
036313
(
2003
).
34.
Fielding
,
S. M.
, and
P. D.
Olmsted
, “
Flow phase diagrams for concentration-coupled shear banding
,”
Eur. Phys. J. E
11
,
65
83
(
2003
).
35.
Ravindranath
,
S.
,
S.-Q.
Wang
,
M.
Olechnowicz
, and
R. P.
Quirk
, “
Banding in simple steady shear of entangled polymer solutions
,”
Macromolecules
41
,
2663
2670
(
2008
).
36.
Dill
,
K. A.
, and
B. H.
Zimm
, “
A rhelogical separator for very large DNA molecules
,”
Nucleic Acids Res.
7
,
735
749
(
1979
).
37.
MacDonald
,
M. J.
, and
S. J.
Muller
, “
Experimental study of shear-induced migration of polymers in dilute solutions
,”
J. Rheol.
40
,
259
283
(
1996
).
38.
Metzner
,
A. B.
,
Y.
Cohen
, and
C.
Rangel-Nafaile
, “
Inhomogeneous flows of non-newtonian fluids: Generation of spatial concentration gradients
,”
J.: Nonnewton. Fluid Mech.
5
,
449
462
(
1979
).
39.
Fang
,
L.
,
C. C.
Hsieh
, and
R. G.
Larson
, “
Molecular imaging of shear-induced polymer migration in dilute solutions near a surface
,”
Macromolecules
40
,
8490
8499
(
2007
).
40.
Apostolakis
,
M. V.
,
V. G.
Mavrantzas
, and
A. N.
Beris
, “
Stress gradient-induced migration effects in the Taylor–Couette flow of a dilute polymer solution
,”
J. Nonnewton. Fluid Mech.
102
,
409
445
(
2002
).
41.
Hu
,
Y. T.
, and
A.
Lips
, “
Kinetics and mechanism of shear banding in an entangled micellar solution
,”
J. Rheol.
49
,
1001
1027
(
2005
).
42.
Crocker
,
J.
, and
D.
Grier
, “
Methods of digital video microscopy for colloidal studies
,”
J. Colloid Interface Sci.
179
,
298
310
(
1996
).
43.
Tao
,
H.
,
C.
Huang
, and
T. P.
Lodge
, “
Correlation length and entanglement spacing in concentrated hydrogenated polybutadiene solutions
,”
Macromolecules
32
,
1212
1217
(
1999
).
44.
Likhtman
,
A. E.
, and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-poly equation
,”
J. Nonnewton. Fluid Mech.
114
,
1
12
(
2003
).
45.
Dhont
,
J. K. G.
, and
W. J.
Briels
, “
Gradient and vorticity banding
,”
Rheol. Acta
47
,
257
281
(
2008
).
46.
Colby
,
R. H.
,
L. J.
Fetters
,
W. G.
Funk
, and
W. W.
Graessley
, “
Effects of concentration and thermodynamic interaction on the viscoelastic properties of polymer solutions
,”
Macromolecules
24
,
3873
3882
(
1991
).
47.
Migler
,
K. B.
,
H.
Hervet
, and
L.
Leger
, “
Slip transition of a polymer melt under shear stress
,”
Phys. Rev. Lett.
70
,
287
290
(
1993
).
48.
Archer
,
L. A.
,
R. G.
Larson
, and
Y. L.
Chen
, “
Direct measurements of slip in sheared polymer solutions
,”
J. Fluid Mech.
301
,
133
151
(
1995
).
49.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
Oxford
,
2003
).
50.
Melnichenko
,
Y.
,
M.
Anisimov
,
A.
Povodyrev
,
G.
Wignall
,
J.
Sengers
, and
W.
Van Hook
, “
Sharp crossover of the susceptibility in polymer solutions near the critical demixing point
,”
Phys. Rev. Lett.
79
,
5266
5269
(
1997
).
51.
Mhetar
,
V. R.
, and
L. A.
Archer
, “
Slip in entangled polymer solutions
,”
Macromolecules
31
,
8617
8622
(
1998
).
52.
Mhetar
,
V.
, and
L. A.
Archer
, “
Slip in entangled polymer melts. 1.: General features
,”
Macromolecules
31
,
8607
8616
(
1998
).
53.
Hu
,
Y. T.
,
C.
Palla
, and
A.
Lips
, “
Comparison between shear banding and shear thinning in entangled micellar solutions
,”
J. Rheol.
52
,
379
400
(
2008
).
54.
Feindel
,
K. W.
, and
P. T.
Callaghan
, “
Anomalous shear banding: Multidimensional dynamics under fluctuating slip conditions
,”
Rheol. Acta
49
,
1003
1013
(
2010
).
55.
Tang
,
H.
,
T.
Kochetkova
,
H.
Kriegs
,
J. K. G.
Dhont
, and
M. P.
Lettinga
, “
Shear-banding in entangled xanthan solutions: Tunable transition from sharp to broad shear-band interfaces
,”
Soft Matter
14
,
826
836
(
2018
).
56.
Mohammadigoushki
,
H.
, and
S. J.
Muller
, “
A flow visualization and superposition rheology study of shear-banding wormlike micelle solutions
,”
Soft Matter
12
,
1051
–1061 (
2015
).
57.
Boukany
,
P. E.
,
Y. T.
Hu
, and
S.-Q.
Wang
, “
Observations of wall slip and shear banding in an entangled DNA solution
,”
Macromolecules
41
,
2644
2650
(
2008
).
58.
Fielding
,
S. M.
, “
Linear instability of planar shear banded flow
,”
Phys. Rev. Lett.
95
,
134501
(
2005
).
59.
Fielding
,
S. M.
, “
Complex dynamics of shear banded flows
,”
Soft Matter
3
,
1262
1279
(
2007
).
60.
Fardin
,
M. A.
,
T. J.
Ober
,
C.
Gay
,
G.
Grégoire
,
G. H.
McKinley
, and
S.
Lerouge
, “
Criterion for purely elastic Taylor-Couette instability in the flows of shear-banding fluids
,”
Europhys. Lett.
96
,
44004
(
2011
).
61.
Ravindranath
,
S.
, and
S.-Q.
Wang
, “
Steady state measurements in stress plateau region of entangled polymer solutions: Controlled-rate and controlled-stress modes
,”
J. Rheol.
52
,
957
980
(
2008
).
62.
Adams
,
J. M.
, and
P. D.
Olmsted
, “
Nonmonotonic models are not necessary to obtain shear banding phenomena in entangled polymer solutions
,”
Phys. Rev. Lett.
102
,
067801
(
2009
).
63.
Adams
,
J. M.
,
S. M.
Fielding
, and
P. D.
Olmsted
, “
Transient shear banding in entangled polymers: A study using the rolie-poly model
,”
J. Rheol.
55
,
1007
1032
(
2011
).
64.
Moorcroft
,
R. L.
, and
S. M.
Fielding
, “
Criteria for shear banding in time-dependent flows of complex fluids
,”
Phys. Rev. Lett.
110
,
086001
(
2013
).
65.
Moorcroft
,
R. L.
, and
S. M.
Fielding
, “
Shear banding in time-dependent flows of polymers and wormlike micelles
,”
J. Rheol.
58
,
103
147
(
2014
).
66.
Cao
,
J.
, and
A. E.
Likhtman
, “
Shear banding in molecular dynamics of polymer melts
,”
Phys. Rev. Lett.
108
,
028302
(
2012
).
67.
Mohagheghi
,
M.
, and
B.
Khomami
, “
Molecularly based criteria for shear banding in transient flow of entangled polymeric fluids
,”
Phys. Rev. E
93
,
062606
(
2016
).
68.
Mohagheghi
,
M.
, and
B.
Khomami
, “
Elucidating the flow-microstructure coupling in entangled polymer melts.: part II: Molecular mechanism of shear banding
,”
J. Rheol.
60
,
861
872
(
2016
).
69.
Boudaghi-Khajehnobar
,
M.
,
B. J.
Edwards
, and
B.
Khomami
, “
Effects of chain length and polydispersity on shear banding in simple shear flow of polymeric melts
,”
Soft Matter
16
,
6468
6483
(
2020
).
70.
Boukany
,
P. E.
, and
S.-Q.
Wang
, “
Shear banding or not in entangled DNA solutions
,”
J. Rheol.
53
,
73
83
(
2009
).
71.
Cheng
,
S.
, and
S.-Q.
Wang
, “
Is shear banding a metastable property of well-entangled polymer solutions?
,”
J. Rheol.
56
,
1413
1428
(
2012
).
You do not currently have access to this content.