Rheological characterization of complex fluids subjected to cyclic shear-rate sweep often exhibits hysteresis. Since both viscoelastic and thixotropic materials show hysteresis loops, it is important to understand distinguishing features (if any) in the same shown by either. Lately, there has been substantial work that attempts to relate the area enclosed by the hysteresis loop with the manner in which shear rate is varied in the cycle, in order to infer thixotropic parameters of a material. In this work, we use the nonlinear Giesekus model to study its response to the application of cyclic shear-rate sweep. We find that this model produces each type of qualitatively similar hysteresis loop that has hitherto been ascribed to thixotropic materials. We also show that the area of the hysteresis loop for a viscoelastic material as a function of sweep rate shows bell-shaped/bi-modal curves as has been observed for thixotropic materials. This study illustrates that caution needs to be exercised while attributing hysteresis loops and associated features observed in a material exclusively to thixotropy. Another feature related to the hysteresis loop is the occurrence of shear banding instability. We find that viscoelastic hysteresis may not have any connection to shear banding instability.

1.
Barnes
,
H. A.
, “
Thixotropy—A review
,”
J. Non-Newtonian Fluid Mech.
70
,
1
33
(
1997
).
2.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147
,
214
227
(
2009
).
3.
Larson
,
R. G.
, and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
,
477
501
(
2019
).
4.
Agarwal
,
M.
,
S.
Sharma
,
V.
Shankar
, and
Y. M.
Joshi
, “
Distinguishing thixotropy from viscoelasticity
,”
J. Rheol.
65
,
663
680
(
2021
).
5.
Bird
,
R. B.
, and
B. D.
Marsh
, “
Viscoelastic hysteresis. Part Ii. Model predictions
,”
Transactions of the Society of Rheology
12
,
479
488
(
1968
).
6.
Marsh
,
B. D.
, “
Viscoelastic hysteresis. Part II. Numerical and experimental examples
,”
Trans. Soc. Rheol.
12
,
489
510
(
1968
).
7.
Bird
,
R. B.
, and
P. J.
Carreau
, “
A nonlinear viscoelastic model for polymer solutions and melts—I
,”
Chem. Eng. Sci.
23
,
427
434
(
1968
).
8.
Greener
,
J.
, and
R.
Connelly
, “
The response of viscoelastic liquids to complex strain histories: The thixotropic loop
,”
J. Rheol.
30
,
285
300
(
1986
).
9.
Rubio-Hernández
,
F.
, and
A.
Gómez-Merino
, “
Time dependent mechanical behavior: The viscoelastic loop
,”
Mech. Time-Dependent Mater.
12
,
357
364
(
2008
).
10.
Fredrickson
,
A. G.
,
Principles and Applications of Rheology
(
Prentice-Hall
,
Englewood Cliffs, New Jersey
,
1964
).
11.
Larson
,
R.
, “
Constitutive equations for thixotropic fluids
,”
J. Rheol.
59
,
595
611
(
2015
).
12.
Mewis
,
J.
, “
Thixotropy—A general review
,”
J. Non-Newtonian Fluid Mech.
6
,
1
20
(
1979
).
13.
Mujumdar
,
A.
,
A. N.
Beris
, and
A. B.
Metzner
, “
Transient phenomena in thixotropic systems
,”
J. Non-Newtonian Fluid Mech.
102
,
157
178
(
2002
).
14.
Armstrong
,
M. J.
,
A. N.
Beris
,
S. A.
Rogers
, and
N. J.
Wagner
, “
Dynamic shear rheology of a thixotropic suspension: Comparison of an improved structure-based model with large amplitude oscillatory shear experiments
,”
J. Rheol.
60
,
433
450
(
2016
).
15.
McMillen
,
E. L.
, “
Thixotropy and plasticity. III—The effect of thixotropy upon plasticity measurements
,”
J. Rheol.
3
,
179
195
(
1932
).
16.
Weltmann
,
R.
, “
Thixotropic behavior of oils
,”
Industr. Eng. Chem. Anal. Ed.
15
,
424
429
(
1943
).
17.
Hahn
,
S. J.
,
T.
Ree
, and
H.
Eyring
, “
Flow mechanism of thixotropic substances
,”
Industr. Eng. Chem.
51
,
856
857
(
1959
).
18.
Green
,
H.
, “
High-speed rotational viscometer of wide range. Confirmation of Thereiner equation of flow
,”
Industr. Eng. Chem. Anal. Ed.
14
,
576
585
(
1942
).
19.
Krystyjan
,
M.
,
M.
Sikora
,
G.
Adamczyk
,
A.
Dobosz
,
P.
Tomasik
,
W.
Berski
,
M.
Łukasiewicz
, and
P.
Izak
, “
Thixotropic properties of waxy potato starch depending on the degree of the granules pasting
,”
Carbohydr. Polym.
141
,
126
134
(
2016
).
20.
Fazilati
,
M.
,
S.
Ingelsten
,
S.
Wojno
,
T.
Nypelö
, and
R.
Kádár
, “
Thixotropy of cellulose nanocrystal suspensions
,”
J. Rheol.
65
,
1035
1052
(
2021
).
21.
Jeong
,
S. W.
,
J.
Locat
,
J. K.
Torrance
, and
S.
Leroueil
, “
Thixotropic and anti-thixotropic behaviors of fine-grained soils in various flocculated systems
,”
Eng. Geol.
196
,
119
125
(
2015
).
22.
Perret
,
D.
,
J.
Locat
, and
P.
Martignoni
, “
Thixotropic behavior during shear of a fine-grained mud from Eastern Canada
,”
Eng. Geol.
43
,
31
44
(
1996
).
23.
Fourmentin
,
M.
,
G.
Ovarlez
,
P.
Faure
,
U.
Peter
,
D.
Lesueur
,
D.
Daviller
, and
P.
Coussot
, “
Rheology of lime paste—A comparison with cement paste
,”
Rheol. Acta
54
,
647
656
(
2015
).
24.
Ma
,
J.
,
Y.
Lin
,
X.
Chen
,
B.
Zhao
, and
J.
Zhang
, “
Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions
,”
Food Hydrocolloids
38
,
119
128
(
2014
).
25.
Durairaj
,
R.
,
N.
Ekere
, and
B.
Salam
, “
Thixotropy flow behaviour of solder and conductive adhesive pastes
,”
J. Mater. Sci.: Mater. Electron.
15
,
677
683
(
2004
).
26.
Li
,
Z.
,
D.
Li
,
Y.
Chen
, and
H.
Cui
, “
Study of the thixotropic behaviors of ferrofluids
,”
Soft Matter
14
,
3858
3869
(
2018
).
27.
Ghica
,
M. V.
,
M.
Hîrjău
,
D.
Lupuleasa
, and
C.-E.
Dinu-Pîrvu
, “
Flow and thixotropic parameters for rheological characterization of hydrogels
,”
Molecules
21
,
786
(
2016
).
28.
Wang
,
C.
,
L.
Qiu
, and
T.
Wang
, “
Self-assembly and rheological behaviors of intermacromolecular complexes consisting of oppositely charged fluorinated guar gums
,”
Carbohydr. Polym.
184
,
333
341
(
2018
).
29.
Divoux
,
T.
,
C.
Barentin
, and
S.
Manneville
, “
From stress-induced fluidization processes to Herschel–Bulkley behaviour in simple yield stress fluids
,”
Soft Matter
7
,
8409
8418
(
2011
).
30.
Iotti
,
M.
,
Ø. W.
Gregersen
,
S.
Moe
, and
M.
Lenes
, “
Rheological studies of microfibrillar cellulose water dispersions
,”
J. Polym. Environ.
19
,
137
145
(
2011
).
31.
Labanda
,
J.
, and
J.
Llorens
, “
Influence of sodium polyacrylate on the rheology of aqueous laponite dispersions
,”
J. Colloid Interface Sci.
289
,
86
93
(
2005
).
32.
Chen
,
L.
,
C.
Zukoski
,
B.
Ackerson
,
H.
Hanley
,
G.
Straty
,
J.
Barker
, and
C.
Glinka
, “
Structural changes and orientational order in a sheared colloidal suspension
,”
Phys. Rev. Lett.
69
,
688
691
(
1992
).
33.
Mendes
,
R.
,
G.
Vinay
,
G.
Ovarlez
, and
P.
Coussot
, “
Reversible and irreversible destructuring flow in waxy oils: An MRI study
,”
J. Non-Newtonian Fluid Mech.
220
,
77
86
(
2015
).
34.
Baldewa
,
B.
, and
Y. M.
Joshi
, “
Thixotropy and physical aging in acrylic emulsion paint
,”
Polym. Eng. Sci.
51
,
2085
2092
(
2011
).
35.
Derakhshandeh
,
B.
,
D.
Vlassopoulos
, and
S. G.
Hatzikiriakos
, “
Thixotropy, yielding and ultrasonic doppler velocimetry in pulp fibre suspensions
,”
Rheol. Acta
51
,
201
214
(
2012
).
36.
Holmes
,
W. M.
,
P. T.
Callaghan
,
D.
Vlassopoulos
, and
J.
Roovers
, “
Shear banding phenomena in ultrasoft colloidal glasses
,”
J. Rheol.
48
,
1085
1102
(
2004
).
37.
Da Cruz
,
F.
,
F.
Chevoir
,
D.
Bonn
, and
P.
Coussot
, “
Viscosity bifurcation in granular materials, foams, and emulsions
,”
Phys. Rev. E
66
,
051305
(
2002
).
38.
Kurokawa
,
A.
,
V.
Vidal
,
K.
Kurita
,
T.
Divoux
, and
S.
Manneville
, “
Avalanche-like fluidization of a non-Bbrownian particle gel
,”
Soft Matter
11
,
9026
9037
(
2015
).
39.
Divoux
,
T.
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
,
018304
(
2013
).
40.
Puisto
,
A.
,
M.
Mohtaschemi
,
M. J.
Alava
, and
X.
Illa
, “
Dynamic hysteresis in the rheology of complex fluids
,”
Phys. Rev. E
91
,
042314
(
2015
).
41.
Radhakrishnan
,
R.
,
T.
Divoux
,
S.
Manneville
, and
S. M.
Fielding
, “
Understanding rheological hysteresis in soft glassy materials
,”
Soft Matter
13
,
1834
1852
(
2017
).
42.
Sollich
,
P.
,
F.
Lequeux
,
P.
Hébraud
, and
M. E.
Cates
, “
Rheology of soft glassy materials
,”
Phys. Rev. Lett.
78
,
2020
2023
(
1997
).
43.
Sollich
,
P.
, “
Rheological constitutive equation for a model of soft glassy materials
,”
Phys. Rev. E
58
,
738
759
(
1998
).
44.
Jamali
,
S.
,
R. C.
Armstrong
, and
G. H.
McKinley
, “
Multiscale nature of thixotropy and rheological hysteresis in attractive colloidal suspensions under shear
,”
Phys. Rev. Lett.
123
,
248003
(
2019
).
45.
Goodeve
,
C. F.
, “
A general theory of thixotropy and viscosity
,”
Trans. Faraday Soc.
35
,
342
358
(
1939
).
46.
Moore
,
F.
, “
The rheology of ceramic slip and bodies
,”
Trans. Brit. Ceram. Soc.
58
,
470
492
(
1959
).
47.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000462 for for the type of hysteresis loops and variation of loop area with δt for an inelastic thixotropic model.
48.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
49.
Helgeson
,
M. E.
,
M. D.
Reichert
,
Y. T.
Hu
, and
N. J.
Wagner
, “
Relating shear banding, structure, and phase behavior in wormlike micellar solutions
,”
Soft Matter
5
,
3858
3869
(
2009
).
50.
Khair
,
A. S.
, “
Large amplitude oscillatory shear of the giesekus model
,”
J. Rheol.
60
,
257
266
(
2016
).
51.
Vlassopoulos
,
D.
, and
S. G.
Hatzikiriakos
, “
A generalized Giesekus constitutive model with retardation time and its association to the spurt effect
,”
J. Non-Newtonian Fluid Mech.
57
,
119
136
(
1995
).
52.
Menezes
,
E.
, and
W.
Graessley
, “
Nonlinear rheological behavior of polymer systems for several shear-flow histories
,”
J. Polym. Sci.
20
,
1817
1833
(
1982
).
53.
Dealy
,
J. M.
, and
K. F.
Wissbrun
, “Transient shear flows used to study nonlinear viscoelasticity,” in Melt Rheology and Its Role in Plastics Processing (Springer, Dordrecht, 1999), pp. 179–230.
54.
Tanner
,
R. I.
,
Engineering Rheology
(
OUP
,
Oxford
,
2000
), Vol. 52.
55.
Kulicke
,
W.-M.
,
R.
Kniewske
, and
J.
Klein
, “
Preparation, characterization, solution properties and rheological behaviour of polyacrylamide
,”
Prog. Polym. Sci.
8
,
373
468
(
1982
).
56.
Povolo
,
F.
,
G.
Schwartz
, and
É. B.
Hermida
, “
Stress relaxation of PVC below the yield point
,”
J. Polym. Sci. B
34
,
1257
1267
(
1996
).
57.
Shaw
,
M. T.
, and
W. J.
MacKnight
,
Introduction to Polymer Viscoelasticity
(
John Wiley & Sons
,
New York
,
2005
).
58.
Suman
,
K.
, and
Y. M.
Joshi
, “
On the universality of the scaling relations during sol-gel transition
,”
J. Rheol.
64
,
863
877
(
2020
).
59.
Izuka
,
A.
,
H. H.
Winter
, and
T.
Hashimoto
, “
Molecular weight dependence of viscoelasticity of polycaprolactone critical gels
,”
Macromolecules
25
,
2422
2428
(
1992
).
60.
Scanlan
,
J. C.
, and
H. H.
Winter
, “The evolution of viscoelasticity near the gel point of end-linking poly (dimethylsiloxane)s,” in Makromolekulare Chemie. Macromolecular Symposia (Wiley Online Library, Hüthig & Wepf Verlag, Basel, 1991), Vol. 45, pp. 11–21.
61.
Suman
,
K.
,
S.
Shanbhag
, and
Y. M.
Joshi
, “
Phenomenological model of viscoelasticity for systems undergoing sol–gel transition
,”
Phys. Fluids
33
,
033103
(
2021
).
62.
Negi
,
A. S.
,
C. G.
Redmon
,
S.
Ramakrishnan
, and
C. O.
Osuji
, “
Viscoelasticity of a colloidal gel during dynamical arrest: Evolution through the critical gel and comparison with a soft colloidal glass
,”
J. Rheol.
58
,
1557
1579
(
2014
).
63.
Joshi
,
N.
,
K.
Suman
, and
Y. M.
Joshi
, “
Rheological behavior of aqueous poly (vinyl alcohol) solution during a freeze–thaw gelation process
,”
Macromolecules
53
,
3452
3463
(
2020
).
64.
Suman
,
K.
,
S.
Sourav
, and
Y. M.
Joshi
, “
Rheological signatures of gel–glass transition and a revised phase diagram of an aqueous triblock copolymer solution of pluronic f127
,”
Phys. Fluids
33
,
073610
(
2021
).
65.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University Press
,
New York
,
2012
).
66.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York
,
1999
), Vol. 150.
67.
Denn
,
M. M.
,
Are Plug-Flow Regions Possible in Fluids Exhibiting a Yield Stress?
(
Dynamics of Complex Fluids, Imperial College Press
,
London
,
1998
), pp.
372
378
.
68.
Yilmaz
,
Y.
,
Ö.
Pekcan
, and
D.
Kaya
, “Sol–gel transition in polyacrylamide gels by using a fluorescence technique,” in Surface and Colloid Science (Springer, Berlin, Heidelberg, 2004), pp. 255–263.
69.
Jamali
,
S.
, and
G. H.
McKinley
, “The Mnemosyne number and the rheology of remembrance,” arXiv:2201.01201.
70.
Javadi
,
E.
, and
S.
Jamali
, “
Thixotropy and rheological hysteresis in blood flow
,”
J. Chem. Phys.
156
,
084901
(
2022
).
71.
Sharma
,
S.
,
V.
Shankar
, and
Y. M.
Joshi
, “
Onset of transient shear banding in viscoelastic shear start-up flows: Implications from linearized dynamics
,”
J. Rheol.
65
,
1391
1412
(
2021
).
72.
Moorcroft
,
R. L.
, and
S. M.
Fielding
, “
Shear banding in time-dependent flows of polymers and wormlike micelles
,”
J. Rheol.
58
,
103
147
(
2014
).

Supplementary Material

You do not currently have access to this content.