An exact solution of coarse-grained polymer models with fluctuating internal friction and hydrodynamic interactions has not been proposed so far due to a one-to-all coupling between the connector vector velocities that precludes the formulation of the governing stochastic differential equations. A methodology for the removal of this coupling is presented, and the governing stochastic differential equations, obtained by attaching a kinetic interpretation to the Fokker–Planck equation for the system, are integrated numerically using Brownian dynamics simulations. The proposed computational route eliminates the calculation of the divergence of the diffusion tensor, which appears in models with internal friction, and is about an order of magnitude faster than the recursion-based algorithm for the decoupling of connector-vector velocities previously developed [Kailasham et al., J. Rheol. 65, 903 (2021)] for the solution of freely draining models with internal friction. The effects of the interplay of various combinations of finite extensibility, internal friction, and hydrodynamic interactions on the steady-shear-viscosity are examined. While finite extensibility leads solely to shear-thinning, both internal friction and hydrodynamic interactions result in shear-thinning followed by shear-thickening. The shear-thickening induced by internal friction effects is more pronounced than that due to hydrodynamic interactions.

1.
Ansari
,
A.
,
C. M.
Jones
,
E. R.
Henry
,
J.
Hofrichter
, and
W. A.
Eaton
, “
The Role of Solvent Viscosity in the Dynamics of Protein Conformational Changes
,”
Science
256
,
1796
1798
(
1992
).
2.
Hagen
,
S. J.
, “
Solvent viscosity and friction in protein folding dynamics
,”
Curr. Protein Pept. Sci.
11
,
385
395
(
2010
).
3.
Samanta
,
N.
,
J.
Ghosh
, and
R.
Chakrabarti
, “
Looping and reconfiguration dynamics of a flexible chain with internal friction
,”
AIP Adv.
4
,
067102
(
2014
).
4.
Samanta
,
N.
, and
R.
Chakrabarti
, “
Reconfiguration dynamics in folded and intrinsically disordered protein with internal friction: Effect of solvent quality and denaturant
,”
Physica A
450
,
165
179
(
2016
).
5.
Das
,
D.
,
L.
Arora
, and
S.
Mukhopadhyay
, “
Short-Range Backbone Dihedral Rotations Modulate Internal Friction in Intrinsically Disordered Proteins
,”
J. Am. Chem. Soc.
144
,
1739
1747
(
2022
).
6.
Khatri
,
B. S.
,
M.
Kawakami
,
K.
Byrne
,
D. A.
Smith
, and
T. C. B.
McLeish
, “
Entropy and barrier-controlled fluctuations determine conformational viscoelasticity of single biomolecules
,”
Biophys. J.
92
,
1825
1835
(
2007
).
7.
Murayama
,
Y.
,
H.
Wada
, and
M.
Sano
, “
Dynamic force spectroscopy of a single condensed DNA
,”
Eur. Phys. Lett.
79
,
58001
(
2007
).
8.
Vincenzi
,
D.
, “
Effect of internal friction on the coil-stretch transition in turbulent flows
,”
Soft Matter
17
,
2421
2428
(
2021
).
9.
Jendrejack
,
R. M.
,
J. J.
De Pablo
, and
M. D.
Graham
, “
Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions
,”
J. Chem. Phys.
116
,
7752
7759
(
2002
).
10.
Larson
,
R. G.
, “
The rheology of dilute solutions of flexible polymers: Progress and problems
,”
J. Rheol.
49
,
1
70
(
2005
).
11.
Schroeder
,
C. M.
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Effect of Hydrodynamic Interactions on DNA Dynamics in Extensional Flow: Simulation and Single Molecule Experiment
,”
Macromolecules
37
,
9242
9256
(
2004
).
12.
Prakash
,
J. R.
, “
Universal dynamics of dilute and semidilute solutions of flexible linear polymers
,”
Curr. Opin. Colloid Interface Sci.
43
,
63
79
(
2019
).
13.
Bird
,
R. B.
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids—Volume 2: Kinetic Theory
(
John Wiley and Sons
,
New York
,
1987
).
14.
Petera
,
D.
, and
M.
Muthukumar
, “
Brownian dynamics simulation of bead-rod chains under shear with hydrodynamic interaction
,”
J. Chem. Phys.
111
,
7614
7623
(
1999
).
15.
Prakash
,
J. R.
, “
Rouse chains with excluded volume interactions in steady simple shear flow
,”
J. Rheol.
46
,
1353
1380
(
2002
).
16.
Sunthar
,
P.
, and
J. R.
Prakash
, “
Parameter-free prediction of DNA conformations in elongational flow by successive fine graining
,”
Macromolecules
38
,
617
640
(
2005
).
17.
Sunthar
,
P.
,
D. A.
Nguyen
,
R.
Dubbelboer
,
J. R.
Prakash
, and
T.
Sridhar
, “
Measurement and prediction of the elongational stress growth in a dilute solution of DNA molecules
,”
Macromolecules
38
,
10200
(
2005
).
18.
Saadat
,
A.
, and
B.
Khomami
, “
Molecular based prediction of the extensional rheology of high molecular weight polystyrene dilute solutions: A hi-fidelity Brownian dynamics approach
,”
J. Rheol.
59
,
1507
1525
(
2015
).
19.
Sasmal
,
C.
,
K.-W.
Hsiao
,
C. M.
Schroeder
, and
J. R.
Prakash
, “
Parameter-free prediction of DNA dynamics in planar extensional flow of semidilute solutions
,”
J. Rheol.
61
,
169
186
(
2017
).
20.
Mackay
,
M. E.
,
C. H.
Liang
, and
P. J.
Halley
, “
Instrument effects on stress jump measurements
,”
Rheol. Acta
31
,
481
489
(
1992
).
21.
Liang
,
C.-H.
, and
M. E.
Mackay
, “
The stress jump of a semirigid macromolecule after shear: Steady-state results
,”
J. Rheol.
37
,
149
174
(
1993
).
22.
Kuhn
,
W.
, and
H.
Kuhn
, “
Bedeutung beschränkt freier Drehbarkeit für die Viskosität und Strömungsdoppelbrechung von Fadenmolekellösungen I
,”
Helv. Chim. Acta
28
,
1533
1579
(
1945
).
23.
Peterlin
,
A.
, “
Frequency Dependence of Intrinsic Viscosity of Macromolecules with Finite Internal Viscosity
,”
J. Polym. Sci., Part A-2: Polym. Phys.
5
,
179
193
(
1967
).
24.
Manke
,
C. W.
, and
M. C.
Williams
, “
Stress Jump at the Inception of Shear and Elongational Flows of Dilute Polymer Solutions, Due to Internal Viscosity
,”
J. Rheol.
31
,
495
510
(
1988
).
25.
Fixman
,
M.
, “
Dynamics of stiff polymer chains
,”
J. Chem. Phys.
89
,
2442
2462
(
1988
).
26.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
).
27.
de Gennes
,
P.-G.
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca
,
1979
).
28.
Manke
,
C. W.
, and
M. C.
Williams
, “
Internal Viscosity of Polymers and the Role of Solvent Resistance
,”
Macromolecules
18
,
2045
2051
(
1985
).
29.
de Sancho
,
D.
,
A.
Sirur
, and
R. B.
Best
, “
Molecular origins of internal friction effects on protein-folding rates
,”
Nat. Commun.
5
,
4307
(
2014
).
30.
Echeverria
,
I.
,
D. E.
Makarov
, and
G. A.
Papoian
, “
Concerted dihedral rotations give rise to internal friction in unfolded proteins
,”
J. Am. Chem. Soc.
136
,
8708
8713
(
2014
).
31.
Booij
,
H. C.
, and
P. H.
van Wiechen
, “
Effect of Internal Viscosity on the Deformation of a Linear Macromolecule in a Sheared Solution
,”
J. Chem. Phys.
52
,
5056
5068
(
1970
).
32.
Hua
,
C. C.
, and
J. D.
Schieber
, “
Nonequilibrium Brownian dynamics simulations of Hookean and FENE dumbbells with internal viscosity
,”
J. Non-Newtonian Fluid Mech.
56
,
307
332
(
1995
).
33.
Ravi Prakash
,
J.
, “The kinetic theory of dilute solutions of flexible polymers: Hydrodynamic interaction,” in Advances in the Flow and Rheology of Non-Newtonian Fluids, Rheology Series Vol. 8, 1st ed., edited by D. Siginer, D. De Kee, and R. Chhabra (Elsevier, The Netherlands, 1999), pp. 467–517.
34.
Hua
,
C. C.
,
J. D.
Schieber
, and
C. W.
Manke
, “
Linear viscoelastic behavior of the Hookean dumbbell with internal viscosity
,”
Rheol. Acta
35
,
225
232
(
1996
).
35.
Kailasham
,
R.
,
R.
Chakrabarti
, and
J. R.
Prakash
, “
Rheological consequences of wet and dry friction in a dumbbell model with hydrodynamic interactions and internal viscosity
,”
J. Chem. Phys.
149
,
094903
(
2018
).
36.
Kailasham
,
R.
,
R.
Chakrabarti
, and
J. R.
Prakash
, “
Rouse model with fluctuating internal friction
,”
J. Rheol.
65
,
903
923
(
2021
).
37.
Manke
,
C. W.
, and
M. C.
Williams
, “
Stress jumps predicted by the internal viscosity model with hydrodynamic interaction
,”
J. Rheol.
36
,
1261
1274
(
1992
).
38.
Dasbach
,
T. P.
,
C. W.
Manke
, and
M. C.
Williams
, “
Complex viscosity for the rigorous formulation of the multibead internal viscosity model with hydrodynamic interaction
,”
J. Phys. Chem.
96
,
4118
4125
(
1992
).
39.
Kailasham
,
R.
,
R.
Chakrabarti
, and
J. R.
Prakash
, “
How important are fluctuations in the treatment of internal friction in polymers?
,”
Soft Matter
17
,
7133
7157
(
2021
).
40.
Khatri
,
B. S.
, and
T. C. B.
McLeish
, “
Rouse Model with Internal Friction: A Coarse Grained Framework for Single Biopolymer Dynamics
,”
Macromolecules
40
,
6770
6777
(
2007
).
41.
Zylka
,
W.
, and
H. C.
Öttinger
, “
A comparison between simulations and various approximations for Hookean dumbbells with hydrodynamic interaction
,”
J. Chem. Phys.
90
,
474
480
(
1989
).
42.
Zylka
,
W.
, “
Gaussian approximation and Brownian dynamics simulations for Rouse chains with hydrodynamic interaction undergoing simple shear flow
,”
J. Chem. Phys.
94
,
4628
4636
(
1991
).
43.
Prabhakar
,
R.
, and
J. R.
Prakash
, “
Gaussian approximation for finitely extensible bead-spring chains with hydrodynamic interaction
,”
J. Rheol.
50
,
561
593
(
2006
).
44.
Fixman
,
M.
, “
Implicit Algorithm for Brownian Dynamics of Polymers
,”
Macromolecules
19
,
1195
1204
(
1986
).
45.
Hütter
,
M.
, and
H. C.
Öttinger
, “
Fluctuation-dissipation theorem, kinetic stochastic integral and efficient simulations
,”
J. Chem. Soc; Faraday Trans.
94
,
1403
1405
(
1998
).
46.
Klimontovich
,
Y. L.
, “
Ito, Stratonovich and kinetic forms of stochastic equations
,”
Physica A
163
,
515
532
(
1990
).
47.
Klimontovich
,
Y.
, “
Alternative description of stochastic processes in nonlinear systems. “kinetic form” of master and fokkerplanck equations
,”
Physica A
182
,
121
132
(
1992
).
48.
Schieber
,
J. D.
, “
Do internal viscosity models satisfy the fluctuation-dissipation theorem?
,”
J. Non-Newtonian Fluid Mech.
45
,
47
61
(
1992
).
49.
Chau
,
C. D.
,
G. J.
Sevink
, and
J. G.
Fraaije
, “
Improved configuration space sampling: Langevin dynamics with alternative mobility
,”
J. Chem. Phys.
128
,
244110
(
2008
).
50.
De Corato
,
M.
,
F.
Greco
,
G.
D’Avino
, and
P. L.
Maffettone
, “
Hydrodynamics and Brownian motions of a spheroid near a rigid wall
,”
J. Chem. Phys.
142
,
194901
(
2015
).
51.
De Corato
,
M.
,
J. J.
Slot
,
M.
Hütter
,
G.
D’Avino
,
P. L.
Maffettone
, and
M. A.
Hulsen
, “
Finite element formulation of fluctuating hydrodynamics for fluids filled with rigid particles using boundary fitted meshes
,”
J. Comput. Phys.
316
,
632
651
(
2016
).
52.
Lang
,
P. S.
,
B.
Obermayer
, and
E.
Frey
, “
Dynamics of a semiflexible polymer or polymer ring in shear flow
,”
Phys. Rev. E
89
,
022606
(
2014
).
53.
Sprinkle
,
B.
,
F.
Balboa Usabiaga
,
N. A.
Patankar
, and
A.
Donev
, “
Large scale Brownian dynamics of confined suspensions of rigid particles
,”
J. Chem. Phys.
147
,
244103
(
2017
).
54.
Sprinkle
,
B.
,
A.
Donev
,
A. P. S.
Bhalla
, and
N.
Patankar
, “
Brownian dynamics of fully confined suspensions of rigid particles without Green's functions
,”
J. Chem. Phys.
150
,
164116
(
2019
).
55.
Prabhakar
,
R.
, and
J. R.
Prakash
, “
Multiplicative separation of the influences of excluded volume, hydrodynamic interactions and finite extensibility on the rheological properties of dilute polymer solutions
,”
J. Non-Newtonian Fluid Mech.
116
,
163
182
(
2004
).
56.
Pincus
,
I.
,
A.
Rodger
, and
J. R.
Prakash
, “
Viscometric Functions and Rheo-optical Properties of Dilute Polymer Solutions: Comparison of FENE-Fraenkel Dumbbells with Rodlike Models
,”
J. Non-Newtonian Fluid Mech.
285
,
104395
(
2020
).
57.
Wedgewood
,
L. E.
, “
Internal viscosity in polymer kinetic theory: shear flows
,”
Rheol. Acta
32
,
405
417
(
1993
).
58.
Schieber
,
J. D.
, “
Internal Viscosity Dumbbell Model with A Gaussian Approximation
,”
J. Rheol.
37
,
1003
1027
(
1993
).
59.
Sureshkumar
,
R.
, and
A. N.
Beris
, “
Uniformly valid approximations for the conformational integrals resulting from Gaussian closure in the Hookean dumbbell model with internal viscosity
,”
J. Rheol.
39
,
1361
1384
(
1995
).
60.
Kishbaugh
,
A. J.
, and
A. J.
McHugh
, “
A discussion of shearthickening in bead-spring models
,”
J. Non-Newtonian Fluid Mech.
34
,
181
206
(
1990
).
61.
Rotne
,
J.
, and
S.
Prager
, “
Variational treatment of hydrodynamic interaction in polymers
,”
J. Chem. Phys.
50
,
4831
4837
(
1969
).
62.
Yamakawa
,
H.
,
Modern Theory of Polymer Solutions
(
Harper and Row
,
New York
,
1971
).
63.
Press
,
W.
,
S.
Teukolsky
,
W.
Vetterling
, and
B.
Flannery
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed. (
Cambridge University
,
Cambridge
,
2007
).
64.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000498 for additional details pertaining to the study. Section SII establishes that the Fokker–Planck equation for a dumbbell, with fluctuating IV and HI derived using the methodology developed in the present work, corresponds to that obtained previously by an alternative route in [35]. Section SIII establishes the equivalence between the present methodology and the decoupling algorithm developed in [36] for free-draining bead-spring-dashpot chains and also compares the computational cost for the two approaches. Section SIV [64] illustrates that the governing equations for the present model satisfy the fluctuation dissipation theorem, and the time-step convergence of the BD simulation results presented in this work is established in Sec. SV. Lastly, Sec. SVI contains the detailed steps for the derivation of the stress tensor expression used in the evaluation of shear viscosity from BD simulations.
65.
Fixman
,
M.
, “
Construction of Langevin forces in the simulation of hydrodynamic interaction
,”
Macromolecules
19
,
1204
1207
(
1986
).
66.
Kröger
,
M.
,
A.
Alba-Perez
,
M.
Laso
, and
H. C.
Ottinger
, “
Variance reduced Brownian simulation of a bead-spring chain under steady shear flow considering hydrodynamic interaction effects
,”
J. Chem. Phys.
113
,
4767
4773
(
2000
).
67.
Jendrejack
,
R. M.
,
M. D.
Graham
, and
J. J.
De Pablo
, “
Hydrodynamic interactions in long chain polymers: Application of the Chebyshev polynomial approximation in stochastic simulations
,”
J. Chem. Phys.
113
,
2894
2900
(
2000
).
68.
Hua
,
C. C.
, and
J. D.
Schieber
, “
Application of kinetic theory models in spatiotemporal flows for polymer solutions, liquid crystals and polymer melts using the connffessit approach
,”
Chem. Eng. Sci.
51
,
1473
1485
(
1996
).
69.
Wagner
,
N. J.
, and
H. C.
Öttinger
, “
Accurate simulation of linear viscoelastic properties by variance reduction through the use of control variates
,”
J. Rheol.
41
,
757
768
(
1997
).
70.
Öttinger
,
H. C.
,
Stochastic Processes in Polymeric Fluids
(
Springer
,
Berlin
,
1996
).
71.
Öttinger
,
H. C.
, “
A model of dilute polymer solutions with hydrodynamic interaction and finite extensibility. I. Basic equations and series expansions
,”
J. Non-Newtonian Fluid Mech.
26
,
207
246
(
1987
).
72.
Wedgewood
,
L. E.
, and
H. C.
Öttinger
, “
A Model of Dilute Polymer-Solutions with Hydrodynamic Interaction and Finite Extensibility .II. Shear Flows
,”
J. Non-Newtonian Fluid Mech.
27
,
245
264
(
1988
).
73.
Öttinger
,
H. C.
, “
Generalized Zimm model for dilute polymer solutions under theta conditions
,”
J. Chem. Phys.
86
,
3731
3749
(
1987
).
74.
Massa
,
D. J.
,
J. L.
Schrag
, and
J. D.
Ferry
, “
Dynamic Viscoelastic Properties of Polystyrene in High-Viscosity Solvents. Extrapolation to Infinite Dilution and High-Frequency Behavior
,”
Macromolecules
4
,
210
214
(
1971
).
75.
Kailasham
,
R.
,
R.
Chakrabarti
, and
J. R.
Prakash
, “
Wet and dry internal friction can be measured with the Jarzynski equality
,”
Phys. Rev. Res.
2
,
013331
(
2020
).
76.
Qiu
,
L.
, and
S. J.
Hagen
, “
A Limiting Speed for Protein Folding at Low Solvent Viscosity
,”
J. Am. Chem. Soc.
126
,
3398
3399
(
2004
).
77.
Soranno
,
A.
,
B.
Buchli
,
D.
Nettels
,
R. R.
Cheng
,
S.
Müller-Späth
,
S. H.
Pfeil
,
A.
Hoffmann
,
E. A.
Lipman
,
D. E.
Makarov
, and
B.
Schuler
, “
Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
17800
(
2012
).
78.
Soranno
,
A.
,
A.
Holla
,
F.
Dingfelder
,
D.
Nettels
,
D. E.
Makarov
, and
B.
Schuler
, “
Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
E1833
E1839
(
2017
).
79.
Zwanzig
,
R.
, “
Diffusion in a rough potential
,”
Proc. Natl. Acad. Sci. U.S.A.
85
,
2029
2030
(
1988
).
80.
Alexander-Katz
,
A.
,
H.
Wada
, and
R. R.
Netz
, “
Internal friction and nonequilibrium unfolding of polymeric globules
,”
Phys. Rev. Lett.
103
,
028102
(
2009
).
81.
Schulz
,
J. C. F.
,
M. S.
Miettinen
, and
R. R.
Netz
, “
Unfolding and Folding Internal Friction of !-Hairpins Is Smaller than That of β-Helices
,”
J. Phys. Chem. B
119
,
4565
4574
(
2015
).
82.
Gerhardt
,
L. J.
, and
C. W.
Manke
, “
Relationships among shear stress jumps and high-frequency dynamic viscosity of viscoelastic fluids
,”
J. Rheol.
38
,
1227
1234
(
1994
).
83.
Stewart
,
W. E.
, and
J. P.
Sorensen
, “
Hydrodynamic Interaction Effects in Rigid Dumbbell Suspensions. II. Computations for Steady Shear Flow
,”
Trans. Soc. Rheol.
16
,
1
13
(
1972
).
84.
Hsieh
,
C.-C.
, and
R. G.
Larson
, “
Modeling hydrodynamic interaction in Brownian dynamics: Simulations of extensional and shear flows of dilute solutions of high molecular weight polystyrene
,”
J. Rheol.
48
,
995
1021
(
2004
).
85.
Liu
,
T. W.
, “
Flexible polymer chain dynamics and rheological properties in steady flows
,”
J. Chem. Phys.
90
,
5826
5842
(
1989
).
86.
Doyle
,
P. S.
,
E. S.
Shaqfeh
, and
A. P.
Gast
, “
Dynamic simulation of freely draining flexible polymers in steady linear flows
,”
J. Fluid Mech.
334
,
251
291
(
1997
).
87.
Hsieh
,
C. C.
,
S.
Jain
, and
R. G.
Larson
, “
Brownian dynamics simulations with stiff finitely extensible nonlinear elastic-Fraenkel springs as approximations to rods in bead-rod models
,”
J. Chem. Phys.
124
,
044911
(
2006
).
88.
Pan
,
S.
,
D. A.
Nguyen
,
B.
Duenweg
,
P.
Sunthar
,
T.
Sridhar
, and
J. R.
Prakash
, “
Shear thinning in dilute and semidilute solutions of polystyrene and DNA
,”
J. Rheol.
62
,
845
867
(
2018
).
89.
Pincus
,
I.
,
A.
Rodger
, and
J. R.
Prakash
, “Dilute polymer solutions under shear flow: Comprehensive qualitative analysis using a bead-spring chain model with a FENE-Fraenkel spring,” arXiV:2206.01870 (2022).
90.
Ryder
,
J. F.
, and
J. M.
Yeomans
, “
Shear thinning in dilute and semidilute solutions of polystyrene and DNA
,”
J. Chem. Phys.
125
,
194906
(
2006
).
91.
Layec-Raphalen
,
M. N.
, and
C.
Wolff
, “
On the shear-thickening behaviour of dilute solutions of chain macromolecules
,”
J. Non-Newtonian Fluid Mech.
1
,
159
173
(
1976
).
92.
Vrahopoulou
,
E. P.
, and
A. J.
McHugh
, “
Shear thinning in dilute polymer solutions
,”
J. Non-Newtonian Fluid Mech.
25
,
157
175
(
1987
).
93.
Bianchi
,
U.
, and
A.
Peterlin
, “
Upturn Effect in the Non-Newtonian Intrinsic Viscosity of Polymer Solutions. II. Polyisobutylene in Polybutene Oil
,”
J. Polym. Sci., Part A-2
6
,
1011
1020
(
1968
).
94.
Simha
,
R.
, “
Effect of concentration on the viscosity of dilute solutions
,”
J. Res. Natl. Bur. Stand.
42
,
409
418
(
1949
).
95.
Weissberg
,
S. G.
,
R.
Simha
, and
S.
Rothman
, “
Viscosity of dilute to moderately concentrated polymer solutions
,”
J. Res. Natl. Bur. Stand.
47
,
298
314
(
1951
).
96.
Wolff
,
C.
,
A.
Silberberg
,
Z.
Priel
, and
M. N.
Layec-Raphalen
, “
Influence of the association of macromolecules in dilute solution on their reduced viscosity
,”
Polymer
20
,
281
287
(
1979
).
97.
Dupuis
,
D.
, and
C.
Wolff
, “
Shear-thickening behavior of dilute polymer solutions: Kinetic interpretation
,”
J. Rheol.
37
,
587
596
(
1993
).
98.
Hatzikiriakos
,
S. G.
, and
D.
Vlassopoulos
, “
Brownian dynamics simulations of shear-thickening in dilute polymer solutions
,”
Rheol. Acta
35
,
274
287
(
1996
).
99.
Tripathi
,
A.
,
K. C.
Tam
, and
G. H.
McKinley
, “
Rheology and dynamics of associative polymers in shear and extension: Theory and experiments
,”
Macromolecules
39
,
1981
1999
(
2006
).
100.
Jaishankar
,
A.
,
M.
Wee
,
L.
Matia-Merino
,
K. K.
Goh
, and
G. H.
McKinley
, “
Probing hydrogen bond interactions in a shear thickening polysaccharide using nonlinear shear and extensional rheology
,”
Carbohydr. Polym.
123
,
136
145
(
2015
).
101.
Peterlin
,
A.
, “
Gradient dependence of intrinsic viscosity of freely flexible linear macromolecules
,”
J. Chem. Phys.
33
,
1799
1802
(
1960
).
102.
Lyulin
,
A. V.
,
D. B.
Adolf
, and
G. R.
Davies
, “
Brownian dynamics simulations of linear polymers under shear flow
,”
J. Chem. Phys.
111
,
758
771
(
1999
).
103.
Liu
,
S.
,
B.
Ashok
, and
M.
Muthukumar
, “
Brownian dynamics simulations of bead-rod-chain in simple shear flow and elongational flow
,”
Polymer
45
,
1383
1389
(
2004
).
104.
Xia
,
C.
,
W.
Kang
,
J.
Wang
, and
W.
Wang
, “
Temperature Dependence of Internal Friction of Peptides
,”
J. Phys. Chem. B
125
,
2821
2832
(
2021
).
105.
Mukherjee
,
S.
,
S.
Mondal
,
S.
Acharya
, and
B.
Bagchi
, “
Tugof-War between Internal and External Frictions and Viscosity Dependence of Rate in Biological Reactions
,”
Phys. Rev. Lett.
128
,
108101
(
2022
).

Supplementary Material

You do not currently have access to this content.