Recently, a simple strategy was developed for preparing interconnected interpenetrating polymer networks (IPNs) based on butyl rubber (IIR) and poly(n-octadecyl acrylate) (PC18A). Solvent-free UV polymerization of n-octadecyl acrylate (C18A) monomer in the melt of IIR at ambient temperature resulted in IPNs with self-healing and shape-memory functions. Here, we demonstrate that the use of IIR grafted with acrylic acid, methacrylic acid, and 10-undecenoic acid instead of unmodified IIR provides a significant improvement in the mechanical properties of IPNs. Differential scanning calorimetry, small-angle x-ray scattering, and wide-angle x-ray scattering analysis reveal side-by-side packing of C18 side chains of PC18A to form lamellar crystals with a melting temperature Tm between 46 and 52 °C. Transmission electron microscopy analysis indicates the existence of quasispherical nanoparticles composed of crystalline domains, which are dispersed in a continuous interpenetrating rubber-PC18A matrix. This microstructure provides them a complete self-recovery behavior induced by heating and an efficient shape-memory function. IPNs exhibit around tenfold higher chemical cross-link density as compared to those prepared from the native IIR, reflecting the effect of pendant vinyl groups on the extent of covalent interconnections between the IIR and PC18A components. The type of the grafted monomers significantly affects the mechanical performance of IPNs, which can be explained with the individual contributions of chemical and physical cross-links to the total cross-link density. The amount of the grafted rubbers in IPN could be further increased up to 80 wt. % by the incorporation of toluene into the reaction system, resulting in IPNs with a wide range of tunable thermal and mechanical properties.

1.
Hager
,
M. D.
,
S.
van der Zwaag
, and
U. S.
Schubert
,
Self-Healing Materials
, Advances in Polymer Science Vol. 273 (
Springer,
New York
,
2016
).
2.
Creton
,
C.
, and
O.
Okay
,
Self-Healing and Self-Recovering Hydrogels
, Advances in Polymer Science Vol. 285 (
Springer,
New York
,
2020
).
3.
Hernández Santana
,
M.
,
M.
den Brabander
,
S.
García
, and
S.
van der Zwaag
, “
Routes to make natural rubber heal: A review
,”
Polym. Rev.
58
,
585
609
(
2018
).
4.
Behl
,
M.
,
J.
Zotzmann
, and
A.
Lendlein
, “
Shape-memory polymers and shape-changing polymers
,” in Shape-Memory Polymers and Shape-Changing Polymers, Advances in Polymer Science Vol. 226, edited by A. Lendleini (Springer, New York, 2009), pp. 1–40.
5.
Su
,
E.
,
C.
Bilici
,
G.
Bayazit
,
S.
Ide
, and
O.
Okay
, “
Solvent-free UV polymerization of n-octadecyl acrylate in butyl rubber: A simple way to produce tough and smart polymeric materials at ambient temperature
,”
ACS Appl. Mater. Interfaces
13
,
21786
21799
(
2021
).
6.
Dakin
,
J. M.
,
K. V. S.
Shanmugam
,
C.
Twigg
,
R. A.
Whitney
, and
J. S.
Parent
, “
Isobutylene-rich macromonomers: Dynamics and yields of peroxide-initiated crosslinking
,”
J. Polym. Sci., Part A: Polym. Chem.
53
,
123
132
(
2015
).
7.
Xiao
,
S.
,
J. S.
Parent
,
R. A.
Whitney
, and
L. K.
Knight
, “
Synthesis and characterization of poly(isobutylene-co-isoprene)-derived macro-monomers
,”
J. Polym. Sci., Part A: Polym. Chem.
48
,
4691
4696
(
2010
).
8.
Cao
,
R.
,
X.
Zhao
,
X.
Zhao
,
X.
Wu
,
X.
Li
, and
L.
Zhang
, “
Bromination modification of butyl rubber and its structure, properties, and application
,”
Ind. Eng. Chem. Res.
58
,
16645
16653
(
2019
).
9.
Okay
,
O.
, “
Semicrystalline physical hydrogels with shape-memory and self-healing properties
,”
J. Mater. Chem. B
7
,
1581
1596
(
2019
).
10.
Ebata
,
K.
,
Y.
Hashimoto
,
S.
Yamamoto
,
M.
Mitsuishi
,
S.
Nagano
, and
J.
Matsui
, “
Nanophase separation of poly(N-alkyl acrylamides): The dependence of the formation of lamellar structures on their alkyl side chains
,”
Macromolecules
52
,
9773
9780
(
2019
).
11.
Osada
,
Y.
, and
A.
Matsuda
, “
Shape memory in hydrogels
,”
Nature
376
,
219
(
1995
).
12.
Matsuda
,
A.
,
J.
Sato
,
H.
Yasunaga
, and
Y.
Osada
, “
Order-disorder transition of a hydrogel containing an n-alkyl acrylate
,”
Macromolecules
27
,
7695
7698
(
1994
).
13.
Bilici
,
C.
,
V.
Can
,
U.
Nöchel
,
M.
Behl
,
A.
Lendlein
, and
O.
Okay
, “
Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength
,”
Macromolecules
49
,
7442
7449
(
2016
).
14.
Lee
,
J. L.
,
E. M.
Pearce
, and
T. K.
Kwei
, “
Morphological development in alkyl-substituted semiflexible polymers
,”
Macromolecules
30
,
8233
8244
(
1997
).
15.
Bilici
,
C.
, and
O.
Okay
, “
Shape memory hydrogels via micellar copolymerization of acrylic acid and n-octadecyl acrylate in aqueous media
,”
Macromolecules
46
,
3125
3131
(
2013
).
16.
Yang
,
Y.
,
C.
Wang
,
C. G.
Wiener
,
J.
Hao
,
S.
Shatas
,
R. A.
Weiss
, and
B. D.
Vogt
, “
Tough stretchable physically-cross-linked electrospun hydrogel fiber mats
,”
ACS Appl. Mater. Interfaces
8
,
22774
22779
(
2016
).
17.
Flory
,
P. J.
,
Principles of Polymer Chemistry
(
Cornell University
,
Ithaca, NY
,
1953
).
18.
Durmaz
,
S.
,
S.
Fank
, and
O.
Okay
, “
Swelling and mechanical properties of solution crosslinked poly(isobutylene) gels
,”
Macromol. Chem. Phys.
203
,
663
672
(
2002
).
19.
Treloar
,
L. R. G.
,
The Physics of Rubber Elasticity
(
University Press
,
Oxford
,
1975
).
20.
Mark
,
J. E.
, and
B.
Erman
,
Rubberlike Elasticity
(
Cambridge University
,
Cambridge
,
2007
).
21.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000414 for synthesis and characterization of the grafted rubbers, and details on the characterization of IPNs by solubility and swelling tests, their DSC, TEM, STEM, and mechanical test results.
You do not currently have access to this content.