We investigate the viscoelastic properties of double dynamic networks (DDNs) based on side-functionalized PnBA chains. One of these networks is highly crosslinked by metal-ligand junctions characterized by a fast association/dissociation dynamics, while the other network is sparsely crosslinked with slow dynamic covalent networks (DCNs). We first show that modulating the dynamics of the metallosupramolecular networks, by playing with the temperature, the density of reversible junctions, or the stress applied, has direct consequences on the local equilibration of the DCN. The latter takes place by a constraint release Rouse process at the rhythm of the association/dissociation of the metal-ligand junctions. Then, based on creep-recovery experiments, we investigate the ability of the DDNs to recover their initial shape after a creep test and show again the important role played by the metallosupramolecular network. In particular, the sample recovery strongly depends on the network connectivity, which is enhanced if a denser metallosupramolecular network is used as it reduces the possible creep of the double dynamic network and increases its elastic memory. The sample recovery also depends on the association-dissociation dynamics of the metallosupramolecular bonds as it fixes how fast the stretched DCN can come back to its equilibrium conformation and can recover its initial shape after a large deformation has been applied. Adjusting the dynamics of the weak network is thus a key process to govern the viscoelastic response of the slow network.

1.
Liu
,
J.
,
C. S. Y.
Tan
,
Z.
Yu
,
N.
Li
,
C.
Abell
, and
O. A.
Scherman
, “
Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing
,”
Adv. Mater.
29
,
1605325
(
2017
).
2.
Fan
,
J.
,
J.
Huang
,
Z.
Gong
,
L.
Cao
, and
Y.
Chen
, “
Toward robust, tough, self-healable supramolecular elastomers for potential application in flexible substrates
,”
ACS Appl. Mater. Interfaces
13
,
1135
1144
(
2021
).
3.
Kim
,
C.
,
S.
Nakagawa
,
M.
Seshimo
,
H.
Ejima
,
H.
Houjou
, and
N.
Yoshie
, “
Tough supramolecular elastomer via entropy-driven hydrogen bonds between vicinal diols
,”
Macromolecules
53
,
4121
4125
(
2020
).
4.
Appel
,
E. A.
,
X. J.
Loh
,
S. T.
Jones
,
F.
Biedermann
,
C. A.
Dreiss
, and
O. A.
Scherman
, “
Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness
,”
J. Am. Chem. Soc.
134
,
11767
11773
(
2012
).
5.
Guo
,
M.
,
L. M.
Pitet
,
H. M.
Wyss
,
M.
Vos
,
P. Y. W.
Dankers
, and
E. W.
Meijer
, “
Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions
,”
J. Am. Chem. Soc.
136
,
6969
6977
(
2014
).
6.
Wang
,
Y. J.
,
X. N.
Zhang
,
Y.
Song
,
Y.
Zhao
,
L.
Chen
,
F.
Su
,
L.
Li
,
Z. L.
Wu
, and
Q.
Zheng
, “
Ultrastiff and tough supramolecular hydrogels with a dense and robust hydrogen bond network
,”
Chem. Mater.
31
,
1430
1440
(
2019
).
7.
Creton
,
C.
, “
50th anniversary perspective: Networks and gels: Soft but dynamic and tough
,”
Macromolecules
50
,
8297
8316
(
2017
).
8.
Chen
,
Q.
,
H.
Chen
,
L.
Zhu
, and
J.
Zheng
, “
Fundamentals of double network hydrogels
,”
J. Mater. Chem. B
3
,
3654
3676
(
2015
).
9.
Zhao
,
X.
,
X.
Chen
,
H.
Yuk
,
S.
Lin
,
X.
Liu
, and
G.
Parada
, “
Soft materials by design: Unconventional polymer networks give extreme properties
,”
Chem. Rev.
121
,
4309
4372
(
2021
).
10.
Gong
,
J. P.
,
Y.
Katsuyama
,
T.
Kurokawa
, and
Y.
Osada
, “
Double-network hydrogels with extremely high mechanical strength
,”
Adv. Mater.
15
,
1155
1158
(
2003
).
11.
Nakajima
,
T.
,
Y.
Ozaki
,
R.
Namba
,
K.
Ota
,
Y.
Maida
,
T.
Matsuda
,
T.
Kurokawa
, and
J. P.
Gong
, “
Tough double-network gels and elastomers from the nonprestretched first network
,”
ACS Macro Lett.
8
,
1407
1412
(
2019
).
12.
Jeong-Yun
,
S.
,
X.
Zhao
,
W. R. K.
Illeperuma
,
O.
Chaudhuri
,
K. H.
Oh
,
D. J.
Mooney
,
J. J.
Vlassak
, and
Z.
Suo
, “
Highly stretchable and tough hydrogels
,”
Nature
489
,
133
136
(
2012
).
13.
Ducrot
,
E.
,
Y.
Chen
,
M.
Bulters
,
R. P.
Sijbesma
, and
C.
Creton
, “
Toughening elastomers with sacrificial bonds and watching them break
,”
Science
344
,
186
189
(
2014
).
14.
Wu
,
J.
,
L.-H.
Cai
, and
D. A.
Weitz
, “
Tough self-healing elastomers by molecular enforced integration of covalent and reversible networks
,”
Adv. Mater.
29
,
1702616
(
2017
).
15.
Jiang
,
C.
,
Y.
Mai
,
W.
Li
, and
B.
Liao
, “
Supersoft, stretchable, tough, and adhesive elastomers with dual metal-ionic crosslinked double-network structure
,”
Macromol. Chem. Phys.
221
,
1900516
(
2020
).
16.
Foster
,
E. M.
,
E. E.
Lensmeyer
,
B.
Zhang
,
P.
Chakma
,
J. A.
Flum
,
J. J.
Via
,
J. L.
Sparks
, and
D.
Konkolewicz
, “
Effect of polymer network architecture, enhancing soft materials using orthogonal dynamic bonds in an interpenetrating network
,”
ACS Macro Lett.
6
,
495
499
(
2017
).
17.
Peng
,
W. L.
,
Y.
You
,
P.
Xie
,
M. Z.
Rong
, and
M. Q.
Zhang
, “
Adaptable interlocking macromolecular networks with homogeneous architecture made from immiscible single networks
,”
Macromolecules
53
,
584
593
(
2020
).
18.
Roy
,
N.
,
E.
Buhler
, and
J.-M.
Lehn
, “
Double dynamic self-healing polymers: Supramolecular and covalent dynamicpolymers based on the bis-iminocarbohydrazide motif
,”
Polym. Int.
63
,
1400
1405
(
2014
).
19.
Neal
,
J. A.
,
D.
Mozhdehi
, and
Z.
Guan
, “
Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds
,”
J. Am. Chem. Soc.
137
,
4846
4850
(
2015
).
20.
Yang
,
H.
,
S.
Ghiassinejad
,
E.
van Ruymbeke
, and
C.-A.
Fustin
, “
Tunable interpenetrating polymer network hydrogels based on dynamic covalent bonds and metal−ligand bonds
,”
Macromolecules
53
,
6956
6967
(
2020
).
21.
Wang
,
Y.
,
D.
Liang
,
Z.
Suo
, and
K.
Jia
, “
Synergy of noncovalent interlink and covalent toughener for tough hydrogel adhesion
,”
Extreme Mech. Lett.
39
,
100797
(
2020
).
22.
Yu
,
Z.
,
Y.
Zhang
,
Z. J.
Gao
,
X. Y.
Ren
, and
G. H.
Gao
, “
Enhancing mechanical strength of hydrogels via IPN structure
,”
J. Appl. Polym. Sci.
134
,
44503
(
2016
).
23.
Li
,
L.
,
X.
Chen
,
K.
Jin
,
M.
Bin Rusayyis
, and
J. M.
Torkelson
, “
Arresting elevated-temperature creep and achieving full crosslink density recovery in reprocessable polymer networks and network composites via nitroxide-mediated dynamic chemistry
,”
Macromolecules
54
,
1452
1464
(
2021
).
24.
Liu
,
Y.
,
Z.
Tang
,
S.
Wu
, and
B.
Guo
, “
Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers
,”
ACS Macro Lett.
8
,
193
199
(
2019
).
25.
Wang
,
S.
,
S.
Ma
,
Q.
Li
,
X.
Xu
,
B.
Wang
,
K.
Huang
,
Y.
Liu
, and
J.
Zhu
, “
Facile preparation of polyimine vitrimers with enhanced creep resistance and thermal and mechanical properties via metal coordination
,”
Macromolecules
53
,
2919
2931
(
2020
).
26.
Mayumi
,
K.
,
A.
Marcellan
,
G.
Ducouret
,
C.
Creton
, and
T.
Narita
, “
Stress–strain relationship of highly stretchable dual cross-link gels: Separability of strain and time effect
,”
ACS Macro Lett.
2
,
1065
1068
(
2013
).
27.
Narita
,
T.
,
K.
Mayumi
,
G.
Ducouret
, and
P.
Hébraud
, “
Viscoelastic properties of poly(vinyl alcohol) hydrogels having permanent and transient cross-links studied by microrheology, classical rheometry, and dynamic light scattering
,”
Macromolecules
46
,
4174
4183
(
2013
).
28.
Li
,
C.-H.
,
C.
Wang
,
C.
Keplinger
,
J.-L.
Zuo
,
L.
Jin
,
Y.
Sun
,
P.
Zheng
,
Y.
Cao
,
F.
Lissel
,
C.
Linder
,
X.-Z.
You
, and
Z.
Bao
, “
A highly stretchable autonomous self-healing elastomer
,”
Nat. Chem.
8
,
618
624
(
2016
).
29.
Van Zee
,
N. J.
, and
R.
Nicolaÿ
, “
Vitrimers: Permanently crosslinked polymers with dynamic network topology
,”
Prog. Polym. Sci.
104
,
101233
(
2020
).
30.
Hammer
,
L.
,
N. J.
Van Zee
, and
R.
Nicolaÿ
, “
Dually crosslinked polymer networks incorporating dynamic covalent bonds
,”
Polymers
13
,
396
–430 (
2021
).
31.
Zhuge
,
F.
,
J.
Brassinne
,
C.-A.
Fustin
,
E.
van Ruymbeke
, and
J.-F.
Gohy
, “
Synthesis and rheology of bulk metallo-supramolecular polymers from telechelic entangled precursors
,”
Macromolecules
50
,
5165
5175
(
2017
).
32.
Zhuge
,
F.
,
L. G. D.
Hawke
,
C.-A.
Fustin
,
J.-F.
Gohy
, and
E.
van Ruymbeke
, “
Decoding the linear viscoelastic properties of model telechelic metallo-supramolecular polymers
,”
J. Rheol.
61
,
1245
1262
(
2017
).
33.
Van Ruymbeke
,
E.
, “
Preface: Special issue on associating polymers
,”
J. Rheol.
61
,
1099
1102
(
2017
).
34.
Leibler
,
L.
,
M.
Rubinstein
, and
R. H.
Colby
, “
Dynamics of reversible networks
,”
Macromolecules
24
,
4701
4707
(
1991
).
35.
Chen
,
Q.
,
G. J.
Tudryn
, and
R. H.
Colby
, “
Ionomer dynamics and the sticky rouse model
,”
J. Rheol.
57
,
1441
1462
(
2013
).
36.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
, 3rd ed. (
Wiley
,
New York
,
1980
).
37.
Munstedt
,
H.
, “
Rheological experiments at constant stress as efficient method to characterize polymer materials
,”
J. Rheol.
58
,
565
587
(
2014
).
38.
Hawke
,
L. G. D.
,
M.
Ahmadi
,
H.
Goldansaz
, and
E.
van Ruymbeke
, “
Viscoelastic properties of linear associating poly(n-butyl acrylate) chains
,”
J. Rheol.
60
,
297
310
(
2016
).
39.
Li
,
Y.
,
C.
Pyromali
,
F.
Zhuge
,
C.-A.
Fustin
,
J.-F.
Gohy
,
D.
Vlassopoulos
, and
E.
van Ruymbeke
, “
Dynamics of entangled metallo-supramolecular polymer networks combining stickers with different lifetimes
,”
J. Rheol.
66
, 1203–1220 (
2022
).
40.
van Ruymbeke
,
E. V.
,
E. B.
Muliawan
,
D.
Vlassopoulos
,
H.
Gao
, and
K.
Matyjaszewski
, “
Melt rheology of star polymers with large number of small arms, prepared by crosslinking poly(n-butyl acrylate) macromonomers via ATRP
,”
Eur. Polym. J.
47
,
746
751
(
2011
).
41.
Likhtman
,
A. E.
, and
T. C. B.
McLeish
, “
Quantitative theory for linear dynamics of linear entangled polymers
,”
Macromolecules
35
,
6332
6343
(
2002
).
42.
Schwarzl
,
F. R.
, “
Numerical calculation of storage and loss modulus from stress relaxation data for linear viscoelastic materials
,”
Rheol. Acta
10
,
165
173
(
1971
).
43.
Gonçalves
,
M. A. D.
,
R. C. S.
Dias
, and
M. R. P. F. N.
Costa
, “
Prediction and experimental characterization of the molecular architecture of FRP and ATRP synthesized polyacrylate networks
,”
Macromol. Symp.
289
,
1
17
(
2010
).
44.
Chen
,
H.
,
J.
Zhang
,
W.
Yu
,
Y.
Cao
,
Z.
Cao
, and
Y.
Tan
, “
Control viscoelasticity of polymer networks with crosslinks of superposed fast and slow dynamics
,”
Angew. Chem., Int. Ed.
60
,
22332
22338
(
2021
).
45.
Wu
,
S.
, and
Q.
Chen
, “
Advances and new opportunities in the rheology of physically and chemically reversible polymers
,”
Macromolecules
55
,
697
714
(
2022
).
46.
Verjans
,
J.
,
A.
André
,
E.
Van Ruymbeke
, and
R.
Hoogenboom
, “
Physically cross-linked polybutadiene by quadruple hydrogen bonding through side-chain incorporation of ureidopyrimidinone with branched alkyl side chains
,”
Macromolecules
55
,
928
941
(
2022
).
47.
Ahmadi
,
M.
, and
S.
Seiffert
, “
Dynamic model metallo-supramolecular dual-network hydrogels with independently tunable network crosslinks
,”
J. Polym. Sci.
58
,
330
342
(
2020
).
48.
Holyer
,
R. H.
,
C. D.
Hubbard
,
S. F. A.
Kettle
, and
R. G.
Wilkins
, “
The kinetics of replacement reactions of complexes of the transition metals with 2,2’,2"-terpyridine
,”
Inorg. Chem.
5
,
622
625
(
1966
).
49.
Calì
,
R.
,
E.
Rizzarelli
,
S.
Sammartano
, and
G.
Siracusa
, “
Thermodynamics of 2,2′,2′'-terpyridinecopper(II) complexes in aqueous solution
,”
Transition Met. Chem.
4
,
328
332
(
1979
).
50.
van Ruymbeke
,
E.
,
V.
Shchetnikava
,
Y.
Matsumiya
, and
H.
Watanabe
, “
Dynamic dilution effect in binary blends of linear polymers with well-separated molecular weights
,”
Macromolecules
47
,
7653
7665
(
2014
).
51.
Watanabe
,
H.
, “
Viscoelasticity and dynamics of entangled polymers
,”
Prog. Polym. Sci.
24
,
1253
1403
(
1999
).
52.
Matsumiya
,
Y.
,
H.
Watanabe
,
A.
Takano
, and
Y.
Takahashi
, “Uniaxial extensional behavior of (SIS)p-type multiblock copolymer systems: Structural origin of high extensibility,”
Macromol.
46
,
2681
2695
(
2013
).
53.
Evans
,
E.
, “Probing the relation between force—lifetime—and chemistry in single molecular bonds,”
Annu. Rev. Biophys. Biomol. Struct.
30
,
105
128
(
2001
).
54.
Amin
,
D.
, and
Wang
,
Z.
, “Nonlinear rheology and dynamics of supramolecular polymer networks formed by associative telechelic chains under shear and extensional flows,”
J. Rheol.
64
,
581
600
(
2020
).
55.
Wu
,
S.
,
Wu
,
S.
,
Fang
,
S.
,
Tang
,
Z.
,
Liu
,
F.
, and
Guo
,
B.
“Bioinspired design of elastomeric vitrimers with sacrificial metal-ligand interactions leading to supramechanical robustness and retentive malleability,”
Materials & Design
192
,
108756
(
2020
).
56.
González-Jiménez
,
A.
,
M.A.
Malmierca
,
P.
Bernal-Ortega
,
P.
Posadas
,
R.
Pérez-Aparicio
,
A.
Marcos-Fernández
,
P.T.
Mather
, and
J.L.
Valentín
, “The shape-memory effect in ionic elastomers: fixation through ionic interactions,”
Soft Matter
13
,
2893
2994
(
2017
).
57.
Li
,
L.
,
X.
Chen
,
K.
Jin
, and
J. M.
Torkelson
, “Vitrimers designed both to strongly suppress creep and to recover original cross-link density after reprocessing: Quantitative theory and experiments,”
Macromol.
51
,
5537
5546
(
2018
).
58.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000473 for information about the synthesis and the preparation protocol of the different systems, about the rheological behavior of DDN containing different weight fractions of DCN, and about the creep compliance data of metallosupramolecular systems
.
You do not currently have access to this content.