We provide a canonical introduction to dual-junction-functionality associative polymer networks, which combine high and low functionality (f) dynamic cross-link junctions to impart load-bearing, dissipation, and self-repairing ability to the network. This unique type of network configuration offers an alternative to traditional dual-junction networks consisting of covalent and reversible cross-links. The high-f junctions can provide load-bearing abilities similar to a covalent cross-link while retaining the ability to self-repair and concurrently confer stimuli-responsive properties arising from the high-f junction species. We demonstrate the mechanical properties of this design motif using metal-coordinating polymer hydrogel networks, which are dynamically cross-linked by different ratios of metal nanoparticle (high-f) and metal ion (low-f) cross-link junctions. We also demonstrate the spontaneous self-assembly of nanoparticle-cross-linked polymers into anisotropic sheets, which may be generalizable for designing dual-junction-functionality associative networks with low volume fraction percolated high-f networks.

1.
Rubinstein
,
M.
, and
A. V.
Dobrynin
, “
Solutions of associative polymers
,”
Trends Polym. Sci.
5
,
181
186
(
1997
).
2.
Zhang
,
Z.
,
Q.
Chen
, and
R. H.
Colby
, “
Dynamics of associative polymers
,”
Soft Matter
14
,
2961
2977
(
2018
).
3.
Golkaram
,
M.
, and
K.
Loos
, “
A critical approach to polymer dynamics in supramolecular polymers
,”
Macromolecules
52
,
9427
9444
(
2019
).
4.
Yount
,
W. C.
,
D. M.
Loveless
, and
S. L.
Craig
, “
Strong means slow: Dynamic contributions to the bulk mechanical properties of supramolecular networks
,”
Angew. Chem. Int. Ed.
44
,
2746
2748
(
2005
).
5.
Marco-Dufort
,
B.
,
R.
Iten
, and
M. W.
Tibbitt
, “
Linking molecular behavior to macroscopic properties in ideal dynamic covalent networks
,”
J. Am. Chem. Soc.
142
,
15371
15385
(
2020
).
6.
Tanaka
,
F.
, and
S. F.
Edwards
, “
Viscoelastic properties of physically crosslinked networks: Part 2. Dynamic mechanical moduli
,”
J. Non-Newtonian Fluid Mech.
43
,
273
288
(
1992
).
7.
Rubinstein
,
M.
, and
A. N.
Semenov
, “
Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics
,”
Macromolecules
31
,
1386
1397
(
1998
).
8.
Chen
,
Q.
,
G. J.
Tudryn
, and
R. H.
Colby
, “
Ionomer dynamics and the sticky rouse model
,”
J. Rheol.
57
,
1441
1462
(
2013
).
9.
Kang
,
J.
,
J. B.-H.
Tok
, and
Z.
Bao
, “
Self-healing soft electronics
,”
Nat. Electron.
2
,
144
150
(
2019
).
10.
Tan
,
Y. J.
,
G. J.
Susanto
,
H. P.
Anwar Ali
, and
B. C. K.
Tee
, “
Progress and roadmap for intelligent self-healing materials in autonomous robotics
,”
Adv. Mater.
33
,
2002800
(
2021
).
11.
Rosales
,
A. M.
, and
K. S.
Anseth
, “
The design of reversible hydrogels to capture extracellular matrix dynamics
,”
Nat. Rev. Mater.
1
,
1
15
(
2016
).
12.
Grindy
,
S. C.
,
R.
Learsch
,
D.
Mozhdehi
,
J.
Cheng
,
D. G.
Barrett
,
Z.
Guan
,
P. B.
Messersmith
, and
N.
Holten-Andersen
, “
Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics
,”
Nat. Mater.
14
,
1210
1216
(
2015
).
13.
Zhang
,
R.
,
C.
Zhang
,
Z.
Yang
,
Q.
Wu
,
P.
Sun
, and
X.
Wang
, “
Hierarchical dynamics in a transient polymer network cross-linked by orthogonal dynamic bonds
,”
Macromolecules
53
,
5937
5949
(
2020
).
14.
Loveless
,
D. M.
,
S. L.
Jeon
, and
S. L.
Craig
, “
Rational control of viscoelastic properties in multicomponent associative polymer networks
,”
Macromolecules
38
,
10171
10177
(
2005
).
15.
Filippidi
,
E.
,
T. R.
Cristiani
,
C. D.
Eisenbach
,
J. H.
Waite
,
J. N.
Israelachvili
,
B. K.
Ahn
, and
M. T.
Valentine
, “
Toughening elastomers using mussel-inspired iron-catechol complexes
,”
Science
358
,
502
505
(
2017
).
16.
Mayumi
,
K.
,
A.
Marcellan
,
G.
Ducouret
,
C.
Creton
, and
T.
Narita
, “
Stress–strain relationship of highly stretchable dual cross-link gels: Separability of strain and time effect
,”
ACS Macro Lett.
2
,
1065
1068
(
2013
).
17.
Mayumi
,
K.
,
J.
Guo
,
T.
Narita
,
C. Y.
Hui
, and
C.
Creton
, “
Fracture of dual crosslink gels with permanent and transient crosslinks
,”
Extreme Mech. Lett.
6
,
52
59
(
2016
).
18.
Song
,
J.
,
M. H.
Rizvi
,
B. B.
Lynch
,
J.
Ilavsky
,
D.
Mankus
,
J. B.
Tracy
,
G. H.
McKinley
, and
N.
Holten-Andersen
, “
Programmable anisotropy and percolation in supramolecular patchy particle gels
,”
ACS Nano
14
,
17018
17027
(
2020
).
19.
Kim
,
S.
,
A. U.
Regitsky
,
J.
Song
,
J.
Ilavsky
,
G. H.
McKinley
, and
N.
Holten-Andersen
, “
In situ mechanical reinforcement of polymer hydrogels via metal-coordinated cross-link mineralization
,”
Nat. Commun.
12
,
667
(
2021
).
20.
Zhukhovitskiy
,
A. V.
,
M.
Zhong
,
E. G.
Keeler
,
V. K.
Michaelis
,
J. E. P.
Sun
,
M. J. A.
Hore
,
D. J.
Pochan
,
R. G.
Griffin
,
A. P.
Willard
, and
J. A.
Johnson
, “
Highly branched and loop-rich gels via formation of metal–organic cages linked by polymers
,”
Nat. Chem.
8
,
33
41
(
2016
).
21.
Gu
,
Y.
,
E. A.
Alt
,
H.
Wang
,
X.
Li
,
A. P.
Willard
, and
J. A.
Johnson
, “
Photoswitching topology in polymer networks with metal–organic cages as crosslinks
,”
Nature
560
,
65
69
(
2018
).
22.
Li
,
Q.
,
D. G.
Barrett
,
P. B.
Messersmith
, and
N.
Holten-Andersen
, “
Controlling hydrogel mechanics via bio-inspired polymer–nanoparticle bond dynamics
,”
ACS Nano
10
,
1317
1324
(
2016
).
23.
Erk
,
K. A.
, and
K. R.
Shull
, “
Rate-dependent stiffening and strain localization in physically associating solutions
,”
Macromolecules
44
,
932
939
(
2011
).
24.
Chen
,
Q.
,
S.
Liang
,
H.-S.
Shiau
, and
R. H.
Colby
, “
Linear viscoelastic and dielectric properties of phosphonium siloxane ionomers
,”
ACS Macro Lett.
2
,
970
974
(
2013
).
25.
Dominguez
,
M. N.
 et al., “
Assembly of linked nanocrystal colloids by reversible covalent bonds
,”
Chem. Mater.
32
,
10235
10245
(
2020
).
26.
Wang
,
S.
, and
R. G.
Larson
, “
Multiple relaxation modes in suspensions of colloidal particles bridged by telechelic polymers
,”
J. Rheol.
62
,
477
490
(
2018
).
27.
Hajizadeh
,
E.
,
S.
Yu
,
S.
Wang
, and
R. G.
Larson
, “
A novel hybrid population balance—Brownian dynamics method for simulating the dynamics of polymer-bridged colloidal latex particle suspensions
,”
J. Rheol.
62
,
235
247
(
2018
).
28.
Phillips
,
J.
, “
Stretched exponential relaxation in molecular and electronic glasses
,”
Rep. Prog. Phys.
59
,
1133
1207
(
1996
).
29.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
NY
,
2003
), Vol. 23.
30.
Campanella
,
A.
,
D.
Döhler
, and
W. H.
Binder
, “
Self-healing in supramolecular polymers
,”
Macromol. Rapid Commun.
39
,
1700739
(
2018
).
31.
Amstad
,
E.
,
T.
Gillich
,
I.
Bilecka
,
M.
Textor
, and
E.
Reimhult
, “
Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups
,”
Nano Lett.
9
,
4042
4048
(
2009
).
32.
Holten-Andersen
,
N.
,
M. J.
Harrington
,
H.
Birkedal
,
B. P.
Lee
,
P. B.
Messersmith
,
K. Y. C.
Lee
, and
J. H.
Waite
, “
pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli
,”
Proc. Natl. Acad. Sci. USA
108
,
2651
2655
(
2011
).
33.
Amstad
,
E.
,
A. U.
Gehring
,
H.
Fischer
,
V. V.
Nagaiyanallur
,
G.
Hähner
,
M.
Textor
, and
E.
Reimhult
, “
Influence of electronegative substituents on the binding affinity of catechol-derived anchors to Fe3O4 nanoparticles
,”
J. Phys. Chem. C
115
,
683
691
(
2011
).
34.
Zaccarelli
,
E.
, “
Colloidal gels: Equilibrium and non-equilibrium routes
,”
J. Phys. Condens. Matter
19
,
323101
(
2007
).
35.
Lindquist
,
B. A.
,
R. B.
Jadrich
,
D. J.
Milliron
, and
T. M.
Truskett
, “
On the formation of equilibrium gels via a macroscopic bond limitation
,”
J. Chem. Phys.
145
,
074906
(
2016
).
36.
Lu
,
P. J.
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
, “
Gelation of particles with short-range attraction
,”
Nature
453
,
499
503
(
2008
).
37.
Shafiq
,
Z.
,
J.
Cui
,
L.
Pastor-Pérez
,
V.
San Miguel
,
R. A.
Gropeanu
,
C.
Serrano
, and
A.
del Campo
, “
Bioinspired underwater bonding and debonding on demand
,”
Angew. Chem.
124
,
4408
4411
(
2012
).
38.
Treloar
,
L. R. G.
,
The Physics of Rubber Elasticity
(
Oxford University Press
,
New York, NY
,
1975
).
39.
Tanaka
,
F.
, and
S. F.
Edwards
, “
Viscoelastic properties of physically crosslinked networks. 1. Transient network theory.
,”
Macromolecules
25
,
1516
1523
(
1992
).
40.
Annable
,
T.
,
R.
Buscall
,
R.
Ettelaie
, and
D.
Whittlestone
, “
The rheology of solutions of associating polymers: Comparison of experimental behavior with transient network theory
,”
J. Rheol.
37
,
695
726
(
1993
).
41.
Akcora
,
P.
 et al., ‘“
Gel-like’ mechanical reinforcement in polymer nanocomposite melts
,”
Macromolecules
43
,
1003
1010
(
2010
).
42.
Newman
,
M. E. J.
, “
Assortative mixing in networks
,”
Phys. Rev. Lett.
89
,
208701
(
2002
).
43.
Gomez-Casado
,
A.
,
H. H.
Dam
,
M. D.
Yilmaz
,
D.
Florea
,
P.
Jonkheijm
, and
J.
Huskens
, “
Probing multivalent interactions in a synthetic host–guest complex by dynamic force spectroscopy
,”
J. Am. Chem. Soc.
133
,
10849
10857
(
2011
).
44.
Huskens
,
J.
,
L. J.
Prins
,
R.
Haag
, and
B. J.
Ravoo
,
Multivalency Concepts, Research and Applications
(
Wiley
,
Hoboken, NJ
,
2018
).
45.
Akcora
,
P.
 et al., “
Anisotropic self-assembly of spherical polymer-grafted nanoparticles
,”
Nat. Mater.
8
,
354
359
(
2009
).
46.
Kumar
,
S. K.
,
N.
Jouault
,
B.
Benicewicz
, and
T.
Neely
, “
Nanocomposites with polymer grafted nanoparticles
,”
Macromolecules
46
,
3199
3214
(
2013
).
47.
Bozorgui
,
B.
,
D.
Meng
,
S. K.
Kumar
,
C.
Chakravarty
, and
A.
Cacciuto
, “
Fluctuation-driven anisotropic assembly in nanoscale systems
,”
Nano Lett.
13
,
2732
2737
(
2013
).
48.
Asai
,
M.
,
A.
Cacciuto
, and
S. K.
Kumar
, “
Quantitative analogy between polymer-grafted nanoparticles and patchy particles
,”
Soft Matter
11
,
793
797
(
2015
).
49.
Chremos
,
A.
, and
J. F.
Douglas
, “
Self-assembly of polymer-grafted nanoparticles in solvent-free conditions
,”
Soft Matter
12
,
9527
9537
(
2016
).
50.
Malkin
,
A. Y.
, and
C. J. S.
Petrie
, “
Some conditions for rupture of polymer liquids in extension
,”
J. Rheol.
41
,
1
25
(
1997
).
51.
Guth
,
E.
, “
Theory of filler reinforcement
,”
J. Appl. Phys.
16
,
20
25
(
1945
).
52.
Creton
,
C.
, “
50th anniversary perspective: Networks and gels: Soft but dynamic and tough
,”
Macromolecules
50
,
8297
8316
(
2017
).
53.
Stukalin
,
E. B.
,
L.-H.
Cai
,
N. A.
Kumar
,
L.
Leibler
, and
M.
Rubinstein
, “
Self-healing of unentangled polymer networks with reversible bonds
,”
Macromolecules
46
,
7525
7541
(
2013
).
54.
Imato
,
K.
,
M.
Nishihara
,
T.
Kanehara
,
Y.
Amamoto
,
A.
Takahara
, and
H.
Otsuka
, “
Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature
,”
Angew. Chem. Int. Ed.
51
,
1138
1142
(
2012
).
55.
Yu
,
C.
,
C.-F.
Wang
, and
S.
Chen
, “
Robust self-healing host–guest gels from magnetocaloric radical polymerization
,”
Adv. Funct. Mater.
24
,
1235
1242
(
2014
).
56.
Zhang
,
H.
,
H.
Xia
, and
Y.
Zhao
, “
Poly (vinyl alcohol) hydrogel can autonomously self-heal
,”
ACS Macro Lett.
1
,
1233
1236
(
2012
).
57.
Gulyuz
,
U.
, and
O.
Okay
, “
Self-healing poly (acrylic acid) hydrogels with shape memory behavior of high mechanical strength
,”
Macromolecules
47
,
6889
6899
(
2014
).
58.
Amamoto
,
Y.
,
J.
Kamada
,
H.
Otsuka
,
A.
Takahara
, and
K.
Matyjaszewski
, “
Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units
,”
Angew. Chem. Int. Ed.
50
,
1660
1663
(
2011
).
59.
South
,
A. B.
, and
L. A.
Lyon
, “
Autonomic self-healing of hydrogel thin films
,”
Angew. Chem. Int. Ed.
49
,
767
771
(
2010
).
60.
Ginzburg
,
V. V.
,
T.
Chatterjee
,
A. I.
Nakatani
, and
A. K.
Van Dyk
, “
Oscillatory and steady shear rheology of model hydrophobically modified ethoxylated urethane-thickened waterborne paints
,”
Langmuir
34
,
10993
11002
(
2018
).
61.
Erk
,
K. A.
, and
J. F.
Douglas
, “
Stretched exponential stress relaxation in a thermally reversible, physically associating block copolymer solution
,” in
MRS Online Proceedings Library Archive
1418
,
1
8
, (
2012
).
62.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000410 for supplementary figures to the article.
You do not currently have access to this content.