The mechanical properties of multiblock copolymer thermoplastic elastomers (TPEs) are governed by the interplay of different reversible dynamics [e.g., hard block (HB) association and chain entanglements]. Understanding how these physical processes influence the high-temperature deformation behavior is relevant as many TPEs lose toughness with increasing temperature. Increasing molecular weight (Mw) improves their temperature resistance that is attributed to an increase in network connectivity. Indeed, longer chains are characterized by more HBs per chain and by a longer lifetime of the entanglements in the amorphous phase. Both the associating HB and disentanglement dynamics are temperature and rate dependent. To further understand the interconnected role of Mw, temperature and rate dependencies on the mechanical properties, we perform Temperature Scanning Stress Relaxation (TSSR) tests. The method consists of measuring the stress relaxation of the materials as the temperature monotonically increases, allowing us to probe the stress response as the HBs progressively disassociate due to the increase in temperature. The results show that increasing Mw improves the high-temperature relaxation behavior, allowing the material to retain more stress than its low Mw counterpart as the temperature increases. This distinction does not show itself when performing standard small strain dynamic mechanical thermal analyses. Depending on the deformation experienced before the TSSR is performed, different relaxation behaviors are observed illustrating the importance of the current microstructure in determining the mechanical properties. The TSSR approach is well-suited to benchmark the high-temperature stress-bearing properties of network-based polymers whose morphology and, hence, properties are strongly deformation dependent.

1.
Fakirov
,
S.
,
Handbook of Condensation Thermoplastic Elastomers
(
Wiley-VCH
,
Weinheim
,
2005
).
2.
Konyukhova
,
E. V.
,
V. M.
Neverov
,
Y. K.
Godovsky
,
S. N.
Chvalun
, and
M.
Soliman
, “
Deformation of polyether-polyester thermoelastoplastics: Mechanothermal and structural characterisation
,”
Macromol. Mater. Eng.
287
,
250
265
(
2002
).
3.
Gaymans
,
R. J.
, “
Segmented copolymers with monodisperse crystallizable hard segments: Novel semi-crystalline materials
,”
Prog. Polym. Sci.
36
,
713
748
(
2011
).
4.
Zhu
,
P.
,
X.
Dong
, and
D.
Wang
, “
Strain-induced crystallization of segmented copolymers: Deviation from the classic deformation mechanism
,”
Macromolecules
50
,
3911
3921
(
2017
).
5.
Aime
,
S.
,
N. D.
Eisenmenger
, and
T. A. P.
Engels
, “
A model for failure in thermoplastic elastomers based on Eyring kinetics and network connectivity
,”
J. Rheol.
61
,
1329
1342
(
2017
).
6.
Auriemma
,
F.
,
C.
De Rosa
,
M.
Scoti
,
R.
Di Girolamo
,
A.
Malafronte
,
M.
Christian D’Alterio
,
L.
Boggioni
,
S.
Losio
,
A.
Caterina Boccia
, and
I.
Tritto
, “
Structure and mechanical properties of ethylene/1-octene multiblock copolymers from chain shuttling technology
,”
Macromolecules
52
,
2669
2680
(
2019
).
7.
Sbrescia
,
S.
,
J.
Ju
,
T.
Engels
,
E.
Van Ruymbeke
, and
M.
Seitz
, “
Morphological origins of temperature and rate dependent mechanical properties of model soft thermoplastic elastomers
,”
J. Polym. Sci.
59
,
477
493
(
2021
).
8.
Scetta
,
G.
,
E.
Euchler
,
J.
Ju
,
N.
Selles
,
P.
Heuillet
,
M.
Ciccotti
, and
C.
Creton
, “
Self-organization at the crack tip of fatigue-resistant thermoplastic polyurethane elastomers
,”
Macromolecules
54
,
8726
8737
(
2021
).
9.
Scetta
,
G.
,
N.
Selles
,
P.
Heuillet
,
M.
Ciccotti
, and
C.
Creton
, “
Cyclic fatigue failure of TPU using a crack propagation approach
,”
Polym. Test.
97
,
107140
(
2021
).
10.
Nébouy
,
M.
,
A.
Louhichi
, and
G. P.
Baeza
, “
Volume fraction and width of ribbon-like crystallites control the rubbery modulus of segmented block copolymers
,”
J. Polym. Eng.
40
,
715
726
(
2020
).
11.
Venneman
,
N.
,
Characterization of Thermoplastic Elastomers by Means of Temperature Scanning Stress Relaxation Measurements. Thermoplastic Elastomers
(
InTech
,
Rijeka
,
2012
), pp.
347
370
.
12.
Skulrat
,
P.
,
C.
Nakason
, and
N.
Vennemann
, “
Thermoplastic elastomers-based natural rubber and thermoplastic polyurethane blends
,”
Iran. Polym. J.
21
,
65
79
(
2012
).
13.
Anagha
,
M. G.
,
T.
Chatterjee
, and
K.
Naskar
, “
Assessing thermomechanical properties of a reactive maleic anhydride grafted styrene-ethylene-butylene-styrene/thermoplastic polyurethane blend with temperature scanning stress relaxation method
,”
J. Appl. Polym. Sci.
137
,
48727
(
2020
).
14.
Vennemann
,
N.
,
K.
Bökamp
, and
D.
Bröker
, “
Crosslink density of peroxide cured TPV
,”
Macromol. Symp.
245-246
,
641
650
(
2006
).
15.
Barbe
,
A.
,
K.
Bökamp
,
C.
Kummerlöwe
,
H.
Sollmann
,
N.
Vennemann
, and
S.
Vinzelberg
, “
Investigation of modified SEBS-based thermoplastic elastomers by temperature scanning stress relaxation measurements
,”
Polym. Eng. Sci.
45
,
1498
1507
(
2005
).
16.
Chatterjee
,
T.
,
S.
Hait
,
A. B.
Bhattacharya
,
A.
Das
,
S.
Wiessner
, and
K.
Naskar
, “
Zinc salts induced ionomeric thermoplastic elastomers based on XNBR and PA12
,”
Polym. Plast. Technol. Mater.
59
,
141
153
(
2020
).
17.
Pichaiyut
,
S.
,
C.
Nakason
,
C.
Kummerlöwe
, and
N.
Vennemann
, “
Thermoplastic elastomer based on epoxidized natural rubber/thermoplastic polyurethane blends: Influence of blending technique
,”
Polym. Plast. Technol. Mater.
23
,
1011
1019
(
2012
).
18.
Chatterjee
,
T.
,
N.
Vennemann
, and
K.
Naskar
, “
Temperature scanning stress relaxation measurements: A unique perspective for evaluation of the thermomechanical behavior of shape memory polymer blends
,”
J. Appl. Polym. Sci.
135
,
45680
(
2018
).
19.
Das
,
A.
,
A.
Sallat
,
F.
Böhme
,
E.
Sarlin
,
J.
Vuorinen
,
N.
Vennemann
,
G.
Heinrich
, and
K. W.
Stöckelhuber
, “
Temperature scanning stress relaxation of an autonomous self-healing elastomer containing non-covalent reversible network junctions
,”
Polymers
10
,
94
(
2018
).
20.
Sbrescia
,
S.
,
T.
Engels
,
E.
Van Ruymbeke
, and
M.
Seitz
, “
Effect of block length on the network connectivity and temperature resistance of model, soft thermoplastic elastomers
,”
J. Rheol.
66
,
177
185
(
2022
).
21.
Gabriëlse
,
W.
,
M.
Soliman
, and
K.
Dijkstra
, “
Microstructure and phase behavior of block copoly (ether ester) thermoplastic elastomers
,”
Macromolecules
34
,
1685
1693
(
2001
).
22.
Schmidt
,
A.
,
W. S.
Veeman
,
V. M.
Litvinov
, and
W.
Gabriëlse
, “
NMR investigations of in-situ stretched block copolymers of poly (butylene terephthalate) and poly (tetramethylene oxide)
,”
Macromolecules
31
,
1652
1660
(
1998
).
23.
Litvinov
,
V. M.
,
M.
Bertmer
,
L.
Gasper
,
D. E.
Demco
, and
B.
Blümich
, “
Phase composition of block copoly (ether ester) thermoplastic elastomers studied by solid-state NMR techniques
,”
Macromolecules
36
,
7598
7606
(
2003
).
24.
Zhu
,
P.
,
C.
Zhou
,
Y.
Wang
,
B.
Sauer
,
W.
Hu
,
X.
Dong
, and
D.
Wang
, “
Reversible–Irreversible Transition of Strain-Induced Crystallization in Segmented Copolymers: The Critical Strain and Chain Conformation
,”
ACS Applied Polymer Materials
3
,
3576
3585
(
2021
).
25.
Flory
,
P. J.
, “
Theory of crystallization in copolymers
,”
Trans. Faraday Soc.
51
,
848
857
(
1955
).
26.
Djoković
,
V.
,
D.
KosTOSKI
,
M. D.
Dramićanin
, and
E.
Suljovrujić
, “
Stress relaxation in high density polyethylene: Effects of orientation and gamma radiation
,”
Polym. J.
31
,
1194
1199
(
1999
).
27.
Boiko
,
Y. M.
,
W.
Brostow
,
A. Y.
Goldman
, and
A. C.
Ramamurthy
, “
Tensile, stress relaxation and dynamic mechanical behavior of polyethylene crystallized from highly deformed melts
,”
Polymer
36
,
1383
1392
(
1995
).
28.
Boiko
,
J. M.
,
V. V.
Kovriga
, and
A. J.
Goldman
, “
Stress relaxation in highly oriented polyethylene
,”
Plaste Kautsch.
40
,
192
(
1993
).
29.
Djoković
,
V.
,
Z.
Kačarević-Popović
,
D.
Dudić
, and
D.
Kostoski
, “
Effect of gamma irradiation on the stress-relaxation of drawn LLDPE
,”
Polym. Degrad. Stab.
61
,
73
77
(
1998
).
30.
De Almeida
,
A.
,
M.
Nébouy
, and
G. P.
Baeza
, “
Bimodal crystallization kinetics of PBT/PTHF segmented block copolymers: Impact of the chain rigidity
,”
Macromolecules
52
,
1227
1240
(
2019
).
31.
Riise
,
B. L.
,
G. H.
Fredrickson
,
R. G.
Larson
, and
D. S.
Pearson
, “
Rheology and shear-induced alignment of lamellar diblock and triblock copolymers
,”
Macromolecules
28
,
7653
7659
(
1995
).
32.
Hsiue
,
G. H.
,
D. J.
Chen
, and
Y. K.
Liew
, “
Stress relaxation and the domain structure of thermoplastic elastomer
,”
J. Appl. Polym. Sci.
35
,
995
1002
(
1988
).
33.
Long
,
D.
, and
P.
Sotta
, “
Stress relaxation of large amplitudes and long timescales in soft thermoplastic and filled elastomers
,”
Rheol. Acta
46
,
1029
1044
(
2007
).
34.
Buckley
,
C. P.
,
D. S. A.
De Focatiis
, and
C.
Prisacariu
, “
Unravelling the mysteries of cyclic deformation in thermoplastic elastomers
,” in
Constitutive Models for Rubber VII
(CRC Press,
2011
), pp.
3
10
.
35.
Mark
,
J. E.
, “
Rubber elasticity
,”
J. Chem. Educ.
58
,
898
(
1981
).
36.
Das
,
C.
,
D. J.
Read
,
M. A.
Kelmanson
, and
T. C.
McLeish
, “
Dynamic scaling in entangled mean-field gelation polymers
,”
Phys. Rev. E
74
,
011404
(
2006
).
37.
Frensdorff
,
H. K.
, “
Block-frequency distribution of copolymers
,”
Macromolecules
4
,
369
375
(
1971
).
38.
Men
,
Y.
,
J.
Rieger
, and
G.
Strobl
, “
Role of the entangled amorphous network in tensile deformation of semicrystalline polymers
,”
Phys. Rev. Lett.
91
,
095502
(
2003
).
39.
Mark
,
J. E.
,
Physical Properties of Polymers Handbook
(
Springer
,
New York
,
2007
).
40.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000444 for additional details on TSSR measurement, for the results on the sample stretched at ∼500%, and for details on the corrections for the calculation of the crosslink density.
You do not currently have access to this content.