This work focuses on the temperature-dependent structural and rheological characterization of polystyrene-b-poly(n-butyl acrylate)-b-polystyrene triblock copolymers (PS-b-PnBA-b-PS) in the melt and, in particular, on their ability to show a lower disorder-to-order temperature (LDOT). To this aim, copolymers of varying block lengths, but keeping the PnBA block as a major component, were synthesized. Small-angle x-ray scattering revealed that the copolymers with short PS blocks (∼10 kg/mol) approach an LDOT but do not cross it. At room temperature, these copolymers exhibit higher moduli compared to a PnBA homopolymer due to the reinforcing effect of the PS but are flowing at temperatures above the glass transition of the PS. Increasing the PS and PnBA block length, to keep the same PS fraction, induces more profound changes in the structural and viscoelastic behaviors. Such a copolymer crosses the LDOT, leading to a microphase-separated and ordered state at high temperature. Contrary to the copolymers with short PS blocks, the flow regime was not reached, even at temperatures well above the glass transition of the PS. Instead, a low-frequency plateau was observed in rheology, showing the increased lifetime of the microphase-separated PS domains. ABA triblock copolymers exhibiting an LDOT behavior could, thus, be of interest for the design of thermoplastic elastomers or pressure-sensitive adhesives that can resist the flow at high temperatures.

1.
Li
,
M.-H.
,
P.
Keller
,
J.
Yang
, and
P.-A.
Albouy
, “
An artificial muscle with Lamellar structure based on a nematic triblock copolymer
,”
Adv. Mater.
16
,
1922
1925
(
2004
).
2.
Howse
,
J. R.
,
P.
Topham
,
C. J.
Crook
,
A. J.
Gleeson
,
W.
Bras
,
R. A. L.
Jones
, and
A. J.
Ryan
, “
Reciprocating power generation in a chemically driven synthetic muscle
,”
Nano Lett.
6
,
73
77
(
2006
).
3.
Karatzas
,
A.
,
M.
Talelli
,
T.
Vasilakopoulos
,
M.
Pitsikalis
, and
N.
Hadjichristidis
, “
Micellization of ω-functionalized diblock copolymers in selective solvent: Study on the effect of hydrogen bonds
,”
Macromolecules
39
,
8456
8466
(
2006
).
4.
Lau
,
B. K.
,
Q.
Wang
,
W.
Sun
, and
L.
Li
, “
Micellization to gelation of a triblock copolymer in water: Thermoreversibility and scaling
,”
J. Polym. Sci. Part B: Polym. Phys.
42
,
2014
2025
(
2004
).
5.
Mai
,
Y.
, and
A.
Eisenberg
, “
Self-assembly of block copolymers
,”
Chem. Soc. Rev.
41
,
5969
(
2012
).
6.
Karayianni
,
M.
, and
S.
Pispas
, “Self-assembly of amphiphilic block copolymers in selective solvents,” in
Fluorescence Studies of Polymer Containing Systems
, edited by K. Proch๫a (Springer, Cham, 2016), Vol. 16, pp. 27–63.
7.
Arun
,
A.
,
K.
Dullaert
, and
R. J.
Gaymans
, “
The melt rheological behavior of AB, ABA, BAB, and (AB) n block copolymers with monodisperse aramide segments
,”
Polym. Eng. Sci.
50
,
756
761
(
2010
).
8.
Hentschel
,
J.
,
A. M.
Kushner
,
J.
Ziller
, and
Z.
Guan
, “
Self-healing supramolecular block copolymers
,”
Angew. Chem. Int. Ed.
51
(
42
),
10561
10565
(
2012
).
9.
Hillmyer
,
M. A.
, and
W. B.
Tolman
, “
Aliphatic polyester block polymers: Renewable, degradable, and sustainable
,”
Acc. Chem. Res.
47
,
2390
2396
(
2014
).
10.
Scheutz
,
G. M.
,
J. J.
Lessard
,
M. B.
Sims
, and
B. S.
Sumerlin
, “
Adaptable crosslinks in polymeric materials: Resolving the intersection of thermoplastics and thermosets
,”
J. Am. Chem. Soc.
141
,
16181
16196
(
2019
).
11.
Bensabeh
,
N.
,
A.
Jiménez-Alesanco
,
I.
Liblikas
,
J. C.
Ronda
,
V.
Cádiz
,
M.
Galià
,
L.
Vares
,
O.
Abián
, and
G.
Lligadas
, “
Biosourced all-acrylic ABA block copolymers with lactic acid-based soft phase
,”
Molecules
25
,
5740
(
2020
).
12.
Shentu
,
Z.
,
Z.
Zhang
,
J.
Zhao
,
C.
Chen
,
Q.
Wu
,
L.
Wang
, and
X.
Yan
, “
Supramolecular polymer-assisted manipulation of triblock copolymers: Understanding the relationships between microphase structures and mechanical properties
,”
J. Mater. Chem. A
9
,
19619
19624
(
2021
).
13.
Bai
,
J.
,
Z.
Shi
,
J.
Yin
, and
M.
Tian
, “
Tailoring the morphologies and mechanical properties of styrene–butadiene–styrene triblock copolymers by the incorporation of thiol functionalized benzoxazine
,”
Macromolecules
47
,
2964
2973
(
2014
).
14.
Burns
,
A. B.
, and
R. A.
Register
, “
Thermoplastic elastomers via combined crystallization and vitrification from homogeneous melts
,”
Macromolecules
49
,
269
279
(
2016
).
15.
Kricheldorf
,
H. R.
,
R. P.
Quirk
, and
G.
Holden
,
Thermoplastic Elastomers
(
Hanser Gardner Publications
, Cincinnati,
2004
).
16.
Shipp
,
D. A.
,
J.-L.
Wang
, and
K.
Matyjaszewski
, “
Synthesis of acrylate and methacrylate block copolymers using atom transfer radical polymerization
,”
Macromolecules
31
,
8005
8008
(
1998
).
17.
Jeusette
,
M.
,
P.
Leclère
,
R.
Lazzaroni
,
F.
Simal
,
J.
Vaneecke
,
T.
Lardot
, and
P.
Roose
, “
New ‘All-acrylate’ block copolymers: Synthesis and influence of the architecture on the morphology and the mechanical properties
,”
Macromolecules
40
,
1055
1065
(
2007
).
18.
Creton
,
C.
, “
Pressure-sensitive adhesives: An introductory course
,”
MRS Bull.
28
,
434
439
(
2003
).
19.
Benedek
,
I.
,
Pressure-Sensitive Adhesives and Applications
, 2nd ed. (
CRC
, New York,
2004
).
20.
Leibler
,
L.
,
M.
Rubinstein
, and
R. H.
Colby
, “
Dynamics of reversible networks
,”
Macromolecules
24
,
4701
4707
(
1991
).
21.
Rubinstein
,
M.
, and
S. P.
Obukhov
, “
Power-law-like stress relaxation of block copolymers: Disentanglement regimes
,”
Macromolecules
26
,
1740
1750
(
1993
).
22.
Hahn
,
H.
,
J. H.
Lee
,
N. P.
Balsara
,
B. A.
Garetz
, and
H.
Watanabe
, “
Viscoelastic properties of aligned block copolymer lamellae
,”
Macromolecules
34
,
8701
8709
(
2001
).
23.
Patel
,
A. J.
,
S.
Narayanan
,
A.
Sandy
,
S. G. J.
Mochrie
,
B. A.
Garetz
,
H.
Watanabe
, and
N. P.
Balsara
, “
Relationship between structural and stress relaxation in a block-copolymer melt
,”
Phys. Rev. Lett.
96
(
25
),
257801
(
2006
).
24.
Takano
,
A.
,
I.
Kamaya
,
Y.
Takahashi
, and
Y.
Matsushita
, “
Effect of loop/bridge conformation ratio on elastic properties of the sphere-forming ABA triblock copolymers: Preparation of samples and determination of loop/bridge ratio
,”
Macromolecules
38
,
9718
9723
(
2005
).
25.
Sbrescia
,
S.
,
J.
Ju
,
T.
Engels
,
E.
Van Ruymbeke
, and
M.
Seitz
, “
Morphological origins of temperature and rate dependent mechanical properties of model soft thermoplastic elastomers
,”
J. Polym. Sci.
59
,
477
493
(
2021
).
26.
Ahn
,
H.
,
Y.
Lee
,
H.
Lee
,
Y. S.
Han
,
B. S.
Seong
, and
D. Y.
Ryu
, “
Various phase behaviors of weakly interacting binary block copolymer blends
,”
Macromolecules
46
,
4454
4461
(
2013
).
27.
Wang
,
R.-Y.
,
J.
Huang
,
X.-S.
Guo
,
X.-H.
Cao
,
S.-F.
Zou
,
Z.-Z.
Tong
,
J.-T.
Xu
,
B.-Y.
Du
, and
Z.-Q.
Fan
, “
Closed-loop phase behavior of block copolymers in the presence of competitive hydrogen-bonding and coulombic interaction
,”
Macromolecules
51
,
4727
4734
(
2018
).
28.
Yeh
,
C.-L.
,
T.
Hou
,
H.-L.
Chen
,
L.-Y.
Yeh
,
F.-C.
Chiu
,
A. J.
Müller
, and
N.
Hadjichristidis
, “
Lower critical ordering transition of poly(ethylene oxide)- block -poly(2-vinylpyridine)
,”
Macromolecules
44
,
440
443
(
2011
).
29.
Mulhearn
,
W. D.
, and
R. A.
Register
, “
Lower critical ordering transition of an all-hydrocarbon polynorbornene diblock copolymer
,”
ACS Macro Lett.
6
,
808
812
(
2017
).
30.
Pollard
,
M.
,
T. P.
Russell
,
A. V.
Ruzette
,
A. M.
Mayes
, and
Y.
Gallot
, “
The effect of hydrostatic pressure on the lower critical ordering transition in diblock copolymers
,”
Macromolecules
31
,
6493
6498
(
1998
).
31.
Cho
,
J.
, “
Microphase separation upon heating in diblock copolymer melts
,”
Macromolecules
34
,
1001
1012
(
2001
).
32.
Mok
,
M. M.
,
C. J.
Ellison
, and
J. M.
Torkelson
, “
Effect of gradient sequencing on copolymer order–disorder transitions: Phase behavior of styrene/n-butyl acrylate block and gradient copolymers
,”
Macromolecules
44
,
6220
6226
(
2011
).
33.
Russell
,
T. P.
,
T. E.
Karis
,
Y.
Gallot
, and
A. M.
Mayes
, “
A lower critical ordering transition in a diblock copolymer melt
,”
Nature
368
,
729
731
(
1994
).
34.
Lv
,
C.
,
R.
Wang
,
J.
Gao
,
N.
Ding
,
S.
Dong
,
J.
Nie
,
J.
Xu
, and
B.
Du
, “
PAA-b-PPO-b-PAA triblock copolymers with enhanced phase separation and inverse order-to-order phase transition upon increasing temperature
,”
Polymer
185
,
121982
(
2019
).
35.
Wang
,
R.-Y.
,
Z.-K.
Zhang
,
X.-S.
Guo
,
X.-H.
Cao
,
T.-Y.
Zhang
,
Z.-Z.
Tong
,
J.-T.
Xu
,
B.-Y.
Du
, and
Z.-Q.
Fan
, “
Mechanistic study of the influence of salt species on the lower disorder-to-order transition behavior of poly(ethylene oxide)-b -poly(ionic liquid)/salt hybrids
,”
Macromolecules
53
,
4560
4567
(
2020
).
36.
Zhang
,
Z.-K.
,
X.-S.
Guo
,
T.-Y.
Zhang
,
R.-Y.
Wang
,
B.-Y.
Du
, and
J.-T.
Xu
, “
Hierarchical structures with double lower disorder-to-order transition and closed-loop phase behaviors in charged block copolymers bearing long alkyl side groups
,”
Macromolecules
53
,
8714
8724
(
2020
).
37.
Wang
,
R.-Y.
,
X.-S.
Guo
,
B.
Fan
,
S.-F.
Zou
,
X.-H.
Cao
,
Z.-Z.
Tong
,
J.-T.
Xu
,
B.-Y.
Du
, and
Z.-Q.
Fan
, “
Design and regulation of lower disorder-to-order transition behavior in the strongly interacting block copolymers
,”
Macromolecules
51
,
2302
2311
(
2018
).
38.
Di Pilla
,
S.
,
Slip and Fall Prevention: A Practical Handbook
(
Lewis
,
Boca Raton, FL
,
2003
).
39.
Mok
,
M. M.
,
S.
Pujari
,
W. R.
Burghardt
,
C. M.
Dettmer
,
S. T.
Nguyen
,
C. J.
Ellison
, and
J. M.
Torkelson
, “
Microphase separation and shear alignment of gradient copolymers: Melt rheology and small-angle x-ray scattering analysis
,”
Macromolecules
41
,
5818
5829
(
2008
).
40.
Nicolas
,
J.
,
A.-V.
Ruzette
,
C.
Farcet
,
P.
Gérard
,
S.
Magnet
, and
B.
Charleux
, “
Nanostructured latex particles synthesized by nitroxide-mediated controlled/living free-radical polymerization in emulsion
,”
Polymer
48
,
7029
7040
(
2007
).
41.
Rana
,
D.
,
K.
Bag
,
S. N.
Bhattacharyya
, and
B. M.
Mandal
, “
Miscibility of poly(styrene-Co-butyl acrylate) with poly(ethyl methacrylate): Existence of both UCST and LCST
,”
J. Polym. Sci. Part B: Polym. Phys.
38
,
369
375
(
2000
).
42.
Chalykh
,
A. E.
,
U. V.
Nikulova
, and
A. A.
Shcherbina
, “
Phase equilibria in a polystyrene-poly(butyl acrylate) system
,”
Polym. Sci. Ser. A
57
,
445
451
(
2015
).
43.
Somani
,
R. H.
, and
M. T.
Shaw
, “
Miscibility of acrylic polymers in polystyrene by melt titration
,”
Macromolecules
14
,
1549
1554
(
1981
).
44.
Mok
,
M. M.
,
J.
Kim
,
C. L. H.
Wong
,
S. R.
Marrou
,
D. J.
Woo
,
C. M.
Dettmer
,
S. T.
Nguyen
,
C. J.
Ellison
,
K. R.
Shull
, and
J. M.
Torkelson
, “
Glass transition breadths and composition profiles of weakly, moderately, and strongly segregating gradient copolymers: Experimental results and calculations from self-consistent mean-field theory
,”
Macromolecules
42
,
7863
7876
(
2009
).
45.
Miwa
,
Y.
,
K.
Usami
,
K.
Yamamoto
,
M.
Sakaguchi
,
M.
Sakai
, and
S.
Shimada
, “
Direct detection of effective glass transitions in miscible polymer blends by temperature-modulated differential scanning calorimetry
,”
Macromolecules
38
,
2355
2361
(
2005
).
46.
Guo
,
Y.
,
X.
Gao
, and
Y.
Luo
, “
Mechanical properties of gradient copolymers of styrene and n -butyl acrylate
,”
J. Polym. Sci. Part B: Polym. Phys.
53
,
860
868
(
2015
).
47.
Mark
,
J. E.
,
Physical Properties of Polymers Handbook
, 2nd ed. (
Springer
, New York,
2006
).
48.
Claudy
,
P.
,
J. M.
Letoffe
,
Y.
Camberlain
, and
J. P.
Pascault
, “
Glass transition of polystyrene versus molecular weight
,”
Polym. Bull.
9–9
,
208
215
(
1983
).
49.
Fredrickson
,
G. H.
, and
E.
Helfand
, “
Fluctuation effects in the theory of microphase separation in block copolymers
,”
J. Chem. Phys.
87
,
697
705
(
1987
).
50.
Mayes
,
A. M.
, and
M. O.
de la Cruz
, “
Concentration fluctuation effects on disorder–order transitions in block copolymer melts
,”
J. Chem. Phys.
95
,
4670
4677
(
1991
).
51.
Wang
,
X.
,
E. E.
Dormidontova
, and
T. P.
Lodge
, “
The order–disorder transition and the disordered micelle regime for poly(ethylenepropylene-b-dimethylsiloxane) spheres
,”
Macromolecules
35
,
9687
9697
(
2002
).
52.
Wang
,
J.
,
Z.-G.
Wang
, and
Y.
Yang
, “
Nature of disordered micelles in sphere-forming block copolymer melts
,”
Macromolecules
38
,
1979
1988
(
2005
).
53.
Lee
,
S.
,
T. M.
Gillard
, and
F. S.
Bates
, “
Fluctuations, order, and disorder in short diblock copolymers
,”
AIChE J.
59
,
3502
3513
(
2013
).
54.
Karis
,
T. E.
,
T. P.
Russell
,
Y.
Gallot
, and
A. M.
Mayes
, “
Rheology of the lower critical ordering transition
,”
Macromolecules
28
,
1129
1134
(
1995
).
55.
Pakula
,
T.
,
K.
Koynov
,
H.
Boerner
,
J.
Huang
,
H.
Lee
,
J.
Pietrasik
,
B.
Sumerlin
, and
K.
Matyjaszewski
, “
Effect of chain topology on the self-organization and the mechanical properties of poly(n-butyl acrylate)-b-polystyrene block copolymers
,”
Polymer
52
,
2576
2583
(
2011
).
56.
Flory
,
P. J.
,
Principles of Polymer Chemistry
(Cornell Univ.,
Ithaca
,
2006
).
57.
Bates
,
F. S.
, “
Block copolymers near the microphase separation transition. 2.: Linear dynamic mechanical properties
,”
Macromolecules
17
,
2607
2613
(
1984
).
58.
Li
,
Y.
,
C.
Pyromali
,
F.
Zhuge
,
C.-A.
Fustin
,
J.-F.
Gohy
,
D.
Vlassopoulos
, and
E.
Van Ruymbeke
, “
Dynamics of entangled metallosupramolecular polymer networks combining stickers with different lifetimes
,”
J. Rheol.
66
, 1203–1220 (
2022
).
59.
Zhuge
,
F.
,
L. G. D.
Hawke
,
C.-A.
Fustin
,
J.-F.
Gohy
, and
E.
van Ruymbeke
, “
Decoding the linear viscoelastic properties of model telechelic metallo-supramolecular polymers
,”
J. Rheol.
61
,
1245
1262
(
2017
).
60.
Han
,
C. D.
, and
J.
Kim
, “
Rheological technique for determining the order–disorder transition of block copolymers
,”
J. Polym. Sci. Part B: Polym. Phys.
25
,
1741
1764
(
1987
).
61.
Han
,
C. D.
,
J.
Kim
, and
J. K.
Kim
, “
Determination of the order-disorder transition temperature of block copolymers
,”
Macromolecules
22
,
383
394
(
1989
).
62.
Patrick
,
R. L.
, and
M.
Dekker
, “
Treatise on adhesion and adhesives
,”
J. Appl. Polym. Sci.
2
,
219
260
(
1969
).
63.
Williams
,
M. L.
,
R. F.
Landel
, and
J. D.
Ferry
, “
The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids
,”
J. Am. Chem. Soc.
77
,
3701
3707
(
1955
).
64.
André
,
A.
,
T.
Shahid
,
F.
Oosterlinck
,
C.
Clasen
, and
E.
van Ruymbeke
, “
Investigating the transition between polymer melts and solutions in nonlinear elongational flow
,”
Macromolecules
54
,
2797
2810
(
2021
).
65.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000506 for full details on copolymer synthesis, additional SAXS and DMA graphs, and master curves for some copolymers.

Supplementary Material

You do not currently have access to this content.