We investigate the fracture properties of poly(acrylamide-co-1-vinylimidazole) dual crosslink hydrogels [P(AAm-co-VIm)-M2+ gels] containing a small fraction of covalent bonds and a majority of dynamic bonds based on metal coordination bonds (Ni2+ or Zn2+). Unlike a previous study on a different dual crosslink hydrogel system having slower dynamic bonds based on poly(vinylalcohol) and borate ions (PVA-Borax gels), the presence of these faster dynamic coordination bonds has two main effects: They significantly toughen the P(AAm-co-VIm)-M2+ gels even at high stretch rates, where the dynamic bonds should in principle behave as covalent bonds at the crack tip, and they toughen the gels at very low stretch rates, where the dynamic bonds are invisible during the loading stage. We propose two additional molecular mechanisms to rationalize this behavior of P(AAm-co-VIm)-M2+ gels: we hypothesize that fast exchanging dynamic bonds remain slow compared to the characteristic time of bond scission and are, therefore, able to share the load upon covalent bond scission even at low loading rates. We also argue of the existence of longer-lived clusters of dynamic bonds that introduce a stretch rate-dependent strain hardening in uniaxial tension and stabilize and increase the size of the dissipative zone at the crack tip, thereby introducing a strain-dependent dissipative mechanism.

1.
Flory
,
P. J.
, and
J.
Rehner
, “
Statistical mechanics of cross-linked polymer networks II. Swelling
,”
J. Chem. Phys.
11
(
11
),
521
526
(
1943
).
2.
Calvert
,
P.
, “
Hydrogels for soft machines
,”
Adv. Mater.
21
(
7
),
743
756
(
2009
).
3.
Peppas
,
N. A.
, and
R.
Langer
, “
New challenges in biomaterials
,”
Science
263
,
1715
1720
(
1994
).
4.
Bastide
,
J.
,
S.
Candau
, and
L.
Leibler
, “
Osmotic deswelling of gels by polymer solutions
,”
Macromolecules
14
,
719
726
(
1981
).
5.
Hong
,
W.
,
X.
Zhao
,
J.
Zhou
, and
Z.
Suo
, “
A theory of coupled diffusion and large deformation in polymeric gels
,”
J. Mech. Phys. Solids
56
(
5
),
1779
1793
(
2008
).
6.
Gong
,
J. P.
,
Y.
Katsuyama
,
T.
Kurokawa
, and
Y.
Osada
, “
Double-network hydrogels with extremely high mechanical strength
,”
Adv. Mater.
15
(
14
),
1155
1158
(
2003
).
7.
Gong
,
J. P.
, “
Why are double network hydrogels so tough?
,”
Soft Matter
6
(
12
),
2583
2590
(
2010
).
8.
Sun
,
J.-Y.
,
X.
Zhao
,
W. R. K.
Illeperuma
,
O.
Chaudhuri
,
K. H.
Oh
,
D. J.
Mooney
,
J. J.
Vlassak
, and
Z.
Suo
, “
Highly stretchable and tough hydrogels
,”
Nature
489
(
7414
),
133
136
(
2012
).
9.
Mayumi
,
K.
,
J.
Guo
,
T.
Narita
,
C. Y.
Hui
, and
C.
Creton
, “
Fracture of dual crosslink gels with permanent and transient crosslinks
,”
Extreme Mech. Lett.
6
,
52
59
(
2016
).
10.
Haraguchi
,
K.
, “
Nanocomposite hydrogels
,”
Curr. Opin. Solid State Mater. Sci.
11
(
3–4
),
47
54
(
2007
).
11.
Liu
,
C.
,
N.
Morimoto
,
L.
Jiang
,
S.
Kawahara
,
T.
Noritomi
,
H.
Yokoyama
,
K.
Mayumi
, and
K.
Ito
, “
Tough hydrogels with rapid self-reinforcement
,”
Science
372
(
6546
),
1078
1081
(
2021
).
12.
Kim
,
J.
,
G.
Zhang
,
M.
Shi
, and
Z.
Suo
, “
Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links
,”
Science
374
(
6564
),
212
216
(
2021
).
13.
Okumura
,
Y.
, and
K.
Ito
, “
The polyrotaxane gel: A topological gel by figure-of-eight cross-links
,”
Adv. Mater.
13
(
7
),
485
487
(
2001
).
14.
Henderson
,
K. J.
,
T. C.
Zhou
,
K. J.
Otim
, and
K. R.
Shull
, “
Ionically cross-linked triblock copolymer hydrogels with high strength
,”
Macromolecules
43
(
14
),
6193
6201
(
2010
).
15.
Tuncaboylu
,
D. C.
,
M.
Sari
,
W.
Oppermann
, and
O.
Okay
, “
Tough and self-healing hydrogels formed via hydrophobic interactions
,”
Macromolecules
44
(
12
),
4997
5005
(
2011
).
16.
Haque
,
M. A.
,
T.
Kurokawa
, and
J. P.
Gong
, “
Anisotropic hydrogel based on bilayers: Color, strength, toughness, and fatigue resistance
,”
Soft Matter
8
(
31
),
8008
8016
(
2012
).
17.
Huang
,
T.
,
H. G.
Xu
,
K. X.
Jiao
,
L. P.
Zhu
,
H. R.
Brown
, and
H. L.
Wang
, “
A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel
,”
Adv. Mater.
19
(
12
),
1622
1626
(
2007
).
18.
Zhao
,
X.
, “
Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks
,”
Soft Matter
10
(
5
),
672
687
(
2014
).
19.
Mayumi
,
K.
,
A.
Marcellan
,
G.
Ducouret
,
C.
Creton
, and
T.
Narita
, “
Stress–strain relationship of highly stretchable dual cross-link gels: Separability of strain and time effect
,”
ACS Macro Lett.
2
(
12
),
1065
1068
(
2013
).
20.
Narita
,
T.
,
K.
Mayumi
,
G.
Ducouret
, and
P.
Hebraud
, “
Viscoelastic properties of poly(vinyl alcohol) hydrogels having permanent and transient cross-links studied by microrheology, classical rheometry, and dynamic light scattering
,”
Macromolecules
46
(
10
),
4174
4183
(
2013
).
21.
Long
,
R.
,
K.
Mayumi
,
C.
Creton
,
T.
Narita
, and
C.-Y.
Hui
, “
Time dependent behavior of a dual cross-link self-healing gel: Theory and experiments
,”
Macromolecules
47
(
20
),
7243
7250
(
2014
).
22.
Guo
,
J.
,
R.
Long
,
K.
Mayumi
, and
C.-Y.
Hui
, “
Mechanics of a dual cross-link gel with dynamic bonds: Steady state kinetics and large deformation effects
,”
Macromolecules
49
(
9
),
3497
3507
(
2016
).
23.
Zhao
,
J.
,
K.
Mayumi
,
C.
Creton
, and
T.
Narita
, “
Rheological properties of tough hydrogels based on an associating polymer with permanent and transient crosslinks: Effects of crosslinking density
,”
J. Rheol.
61
(
6
),
1371
1383
(
2017
).
24.
Lin
,
P.
,
S.
Ma
,
X.
Wang
, and
F.
Zhou
, “
Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery
,”
Adv. Mater.
27
, 2054–2059 (
2015
).
25.
Shao
,
C.
,
M.
Wang
,
L.
Meng
,
H.
Chang
,
B.
Wang
,
F.
Xu
,
J.
Yang
, and
P.
Wan
, “
Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties
,”
Chem. Mater.
30
(
9
),
3110
3121
(
2018
).
26.
Luo
,
F.
,
T. L.
Sun
,
T.
Nakajima
,
D. R.
King
,
T.
Kurokawa
,
Y.
Zhao
,
A. B.
Ihsan
,
X.
Li
,
H.
Guo
, and
J. P.
Gong
, “
Strong and tough polyion-complex hydrogels from oppositely charged polyelectrolytes: A comparative study with polyampholyte hydrogels
,”
Macromolecules
49
(
7
),
2750
2760
(
2016
).
27.
Sun
,
W.
,
B.
Xue
,
Q.
Fan
,
R.
Tao
,
C.
Wang
,
X.
Wang
,
Y.
Li
,
M.
Qin
,
W.
Wang
,
B.
Chen
, and
Y.
Cao
, “
Molecular engineering of metal coordination interactions for strong, tough, and fast-recovery hydrogels
,”
Sci. Adv.
6
(
16
),
eaaz9531
(
2020
).
28.
Lin
,
J.
,
S. Y.
Zheng
,
R.
Xiao
,
J.
Yin
,
Z. L.
Wu
,
Q.
Zheng
, and
J.
Qian
, “
Constitutive behaviors of tough physical hydrogels with dynamic metal-coordinated bonds
,”
J. Mech. Phys. Solids
139
,
103935
(
2020
).
29.
Long
,
R.
,
K.
Mayumi
,
C.
Creton
,
T.
Narita
, and
C.-Y.
Hui
, “
Rheology of a dual crosslink self-healing gel: Theory and measurement using parallel-plate torsional rheometry
,”
J. Rheol.
59
(
3
),
643
665
(
2015
).
30.
Guo
,
J.
,
M.
Liu
,
A. T.
Zehnder
,
J.
Zhao
,
T.
Narita
,
C.
Creton
, and
C.-Y.
Hui
, “
Fracture mechanics of a self-healing hydrogel with covalent and physical crosslinks: A numerical study
,”
J. Mech. Phys. Solids
120
,
79
95
(
2018
).
31.
Guo
,
J.
,
M.
Liu
,
A.
Zehnder
,
J.
Zhao
,
T.
Narita
,
C.
Creton
, and
C.-Y.
Hui
, “
Time-temperature equivalence in a PVA dual cross-link self-healing hydrogel
,”
J. Rheol.
62
,
991
1000
(
2018
).
32.
Kean
,
Z. S.
,
J. L.
Hawk
,
S.
Lin
,
X.
Zhao
,
R. P.
Sijbesma
, and
S. L.
Craig
, “
Increasing the maximum achievable strain of a covalent polymer gel through the addition of mechanically invisible cross-links
,”
Adv. Mater.
26
,
6013
6018
(
2014
).
33.
Zhao
,
J.
,
T.
Narita
, and
C.
Creton
, “
Dual crosslink hydrogels with metal-ligand coordination bonds: Tunable dynamics and mechanics under large deformation
,” in
Self-Healing and Self-Recovering Hydrogels
(
Springer
,
Berlin
,
2020
), Vol. 285, pp. 1–20.
34.
Debertrand
,
L.
,
J.
Zhao
,
C.
Creton
, and
T.
Narita
, “
Swelling and mechanical properties of polyacrylamide-derivative dual-crosslink hydrogels having metal–ligand coordination bonds as transient crosslinks
,”
Gels
7
(
2
),
72
(
2021
).
35.
Tito
,
N. B.
,
C.
Creton
,
C.
Storm
, and
W. G.
Ellenbroek
, “
Harnessing entropy to enhance toughness in reversibly crosslinked polymer networks
,”
Soft Matter
15
(
10
),
2190
2203
(
2019
).
36.
Fullenkamp
,
D. E.
,
L.
He
,
D. G.
Barrett
,
W. R.
Burghardt
, and
P. B.
Messersmith
, “
Mussel-inspired histidine-based transient network metal coordination hydrogels
,”
Macromolecules
46
(
3
),
1167
1174
(
2013
).
37.
Priimov
,
G. U.
,
P.
Moore
,
L.
Helm
, and
A. E.
Merbach
, “
Kinetic and mechanistic studies of substitution reactions of solvated cobalt(II), nickel(II), copper(II) and zinc(II) ions with 2,2′:6′,2″-terpyridine and several 2,2′:6′,2″-terpyridine derivatives: Evidence for the formation of intermediates
,”
BioInorg. React. Mech.
3
(
1
),
1
24
(
2001
).
38.
Bauman
, Jr.,
J. E.
, and
J. C.
Wang
, “
Imidazole complexes of nickel(II), copper(II), zinc(II), and silver (I)
,”
Inorg. Chem.
3
(
3
),
368
373
(
1964
).
39.
Chen
,
C.
,
Z.
Wang
, and
Z.
Suo
, “
Flaw sensitivity of highly stretchable materials
,”
Extreme Mech. Lett.
10
,
50
57
(
2017
).
40.
Long
,
R.
, and
C.-Y.
Hui
, “
Fracture toughness of hydrogels: Measurement and interpretation
,”
Soft Matter
12
(
39
),
8069
8086
(
2016
).
41.
Creton
,
C.
, and
M.
Ciccotti
, “
Fracture and adhesion of soft materials: A review
,”
Rep. Prog. Phys.
79
(
4
),
046601
(
2016
).
42.
Greensmith
,
H. W.
, “
Rupture of rubber. X. The change in stored energy on making a small cut in a test piece held in simple extension
,”
J. Appl. Polym. Sci.
7
(
3
),
993
1002
(
1963
).
43.
Liu
,
Z.
,
M.
Zakoworotny
,
J.
Guo
,
A. T.
Zehnder
, and
C.-Y.
Hui
, “
Energy release rate of a single edge cracked specimen subjected to large deformation
,”
Int. J. Fract.
226
(
1
),
71
79
(
2020
).
44.
Lin
,
W.-C.
,
W.
Fan
,
A.
Marcellan
,
D.
Hourdet
, and
C.
Creton
, “
Large strain and fracture properties of poly(dimethyl acrylamide)/silica hybrid hydrogels
,”
Macromolecules
43
,
2554
2563
(
2010
).
45.
Zhang
,
H.
,
Y.
Chen
,
Y.
Lin
,
X.
Fang
,
Y.
Xu
,
Y.
Ruan
, and
W.
Weng
, “
Spiropyran as a mechanochromic probe in dual cross-linked elastomers
,”
Macromolecules
47
(
19
),
6783
6790
(
2014
).
46.
Maugis
,
D.
, and
M.
Barquins
, “
Fracture mechanics and the adherence of viscoelastic bodies
,”
J. Phys. D: Appl. Phys.
11
,
1989
2023
(
1978
).
47.
Ahn
,
D.
, and
K. R.
Shull
, “
Effects of methylation and neutralization of carboxylated poly(n-butyl acrylate)on the interfacial and bulk contributions to adhesion
,”
Langmuir
14
(
13
),
3637
3645
(
1998
).
48.
Nase
,
J.
,
O.
Ramos
,
C.
Creton
, and
A.
Lindner
, “
Debonding energy of PDMS
,”
Eur. Phys. J. E
36
(
9
),
1
10
(
2013
).
49.
Persson
,
B. N. J.
,
O.
Albohr
,
G.
Heinrich
, and
H.
Ueba
, “
Crack propagation in rubber-like materials
,”
J. Phys.: Condens. Matter
17
(
44
),
R1071
R1142
(
2005
).
50.
Persson
,
B. N. J.
, “
A simple model for viscoelastic crack propagation
,”
Eur. Phys. J. E
44
(
1
),
3
(
2021
).
51.
Tanaka
,
Y.
,
R.
Kuwabara
,
Y.-H.
Na
,
T.
Kurokawa
,
J. P.
Gong
, and
Y.
Osada
, “
Determination of fracture energy of high strength double network hydrogels
,”
J. Phys. Chem. B
109
(
23
),
11559
11562
(
2005
).
52.
Plazek
,
D. J.
,
G.-F.
Gu
,
R. G.
Stacer
,
L.-J.
Su
,
E. D.
Vonmeerwall
, and
F. N.
Kelley
, “
Viscoelastic dissipation and the tear energy of urethane cross-linked polybutadiene elastomers
,”
J. Mater. Sci.
23
(
4
),
1289
1300
(
1988
).
53.
Guo
,
J.
,
A. T.
Zehnder
,
C.
Creton
, and
C.-Y.
Hui
, “
Time dependent fracture of soft materials: Linear versus nonlinear viscoelasticity
,”
Soft Matter
16
(
26
),
6163
6179
(
2020
).
You do not currently have access to this content.