We investigate the linear viscoelastic properties of industrial pressure sensitive adhesives comprising double networks with an entangled acrylate-based polymer and two types of intermolecular associations (crosslinking), permanent (epoxide) and reversible (metal-chelate), having different compositions. A combination of shear rheometry and an appropriately modified version of the Time Marching Algorithm (TMA) allows to probe and analyze the behavior of the different double dynamic networks, in particular, the effects of the type and amount of crosslinks on their linear viscoelastic spectra. To this end, the dynamics of the double networks are compared with the respective individual responses of the polymeric component without crosslinks and the single networks (possessing only physical or only chemical crosslinks), in order to quantify their contributions to the relaxation mechanisms, particularly the interplay between disentanglement and bond association/dissociation processes. With the help of the TMA model, we also examine the respective roles of the lifetime of stickers, polydispersity, and molar mass. Triggered by the good comparison between predictions and experimental data, we propose a framework to tune material parameters in order to obtain a desired viscoelastic behavior.

1.
Creton
,
C.
, “
Pressure-Sensitive adhesives: An introductory course
,”
MRS Bull.
28
,
434
439
(
2003
).
2.
Benedek
,
I.
, and
M. M.
Feldstein
,
Fundamentals of Pressure Sensitivity
(
CRC
,
Boca Raton
,
2009
).
3.
Crosby
,
A. J.
, and
K. R.
Shull
, “
Adhesive failure analysis of pressure-sensitive adhesives
,”
J. Polym. Sci., Part B: Polym. Phys.
37
,
3455
3472
(
1999
).
4.
Benedek
,
I.
,
Pressure-Sensitive Adhesives and Applications
(
CRC
, New York,
2004
).
5.
Daristotle
,
J. L.
,
S. T.
Zaki
,
L. W.
Lau
,
O. B.
Ayyub
,
M.
Djouini
,
P.
Srinivasan
,
M.
Erdi
,
A. D.
Sandler
, and
P.
Kofinas
, “
Pressure-Sensitive tissue adhesion and biodegradation of viscoelastic polymer blends
,”
ACS Appl. Mater. Interfaces
12
,
16050
16057
(
2020
).
6.
Czech
,
Z.
, and
R.
Kurzawa
, “
Acrylic pressure-sensitive adhesive for transdermal drug delivery systems
,”
J. Appl. Polym. Sci.
106
,
2398
2404
(
2007
).
7.
Chen
,
X.
,
Y.
Wang
,
Z.
Cheng
,
J.
Wei
,
Y.
Shi
, and
J.
Qian
, “
Diffusion behavior of drug molecules in acrylic pressure-sensitive adhesive
,”
ACS Omega
5
,
9408
9419
(
2002
).
8.
Musazzi
,
U. M.
,
M. A.
Ortenzi
,
C. G. M.
Gennari
,
A.
Casiraghi
,
P.
Minghetti
, and
F.
Cilurzo
, “
Design of pressure-sensitive adhesive suitable for the preparation of transdermal patches by hot-melt printing
,”
Int. J. Pharm.
586
,
119607
119615
(
2020
).
9.
Marin
,
G.
, and
C.
Derail
, “
Rheology and adherence of pressure-sensitive adhesives
,”
J. Adhes.
82
,
469
485
(
2006
).
10.
Kaelble
,
D. H.
, “
Peel adhesion: Influence of surface energies and adhesive rheology
,”
J. Adhes.
1
,
102
123
(
1969
).
11.
Callies
,
X.
,
O.
Herscher
,
C.
Fonteneau
,
A.
Robert
,
S.
Pensec
,
L.
Bouteiller
,
G.
Ducouret
, and
C.
Creton
, “
Combined effect of chain extension and supramolecular interactions on rheological and adhesive properties of acrylic pressure-sensitive adhesives
,”
ACS Appl. Mater. Interfaces
8
,
33307
33315
(
2016
).
12.
Dahlquist
,
C. A.
, “
Pressure sensitive adhesives
,” in
Treatise on Adhesion and Adhesives
, edited by
R. L.
Patrick
(
Marcel Dekker
,
New York
,
1969
), Vol. 2.
13.
da Silva
,
L. F. M.
,
A.
Ochsner
, and
R. D.
Adams
,
Handbook of Adhesion Technology
(
Springer
,
Berlin
,
2011
).
14.
Brown
,
K.
,
J. C.
Hooker
, and
C.
Creton
, “
Micromechanisms of tack of soft adhesives based on styrenic block copolymers
,”
Macromol. Mater. Eng.
287
,
163
179
(
2002
).
15.
Arrington
,
K. J.
,
S. C.
Radzinski
,
K. J.
Drummey
,
T. E.
Long
, and
J. B.
Matson
, “
Reversibly cross-linkable bottlebrush polymers as pressure-sensitive adhesives
,”
ACS Appl. Mater. Interfaces
10
,
26662
26668
(
2018
).
16.
Courtois
,
J.
,
I.
Baroudi
,
N.
Nouvel
,
E.
Degrandi
,
S.
Pensec
,
G.
Ducouret
,
C.
Chanéac
,
L.
Bouteiller
, and
C.
Creton
, “
Supramolecular soft adhesive materials
,”
Adv. Funct. Mater.
20
,
1803
1811
(
2010
).
17.
Li
,
X.
,
Y.
Deng
,
J.
Lai
,
G.
Zhao
, and
S.
Dong
, “
Tough, long-term, water-resistant, and underwater adhesion of low-molecular-weight supramolecular adhesives
,”
J. Am. Chem. Soc.
142
,
5371
5379
(
2020
).
18.
Heinzmann
,
C.
,
C.
Weder
, and
L. M.
de Espinosa
, “
Supramolecular polymer adhesives: Advanced materials inspired by nature
,”
Chem. Soc. Rev.
45
,
342
358
(
2016
).
19.
Kim
,
E. S.
,
D. B.
Song
,
K. H.
Choi
,
J. H.
Lee
,
D. H.
Suh
, and
W. J.
Choi
, “
Robust and recoverable dual cross-linking networks in pressure-sensitive adhesives
,”
J. Polym. Sci.
58
,
3358
3369
(
2020
).
20.
Dobson
,
A. L.
,
N. J.
Bongiardina
, and
C. N.
Bowman
, “
Combined dynamic network and filler interface approach for improved adhesion and toughness in pressure-sensitive adhesives
,”
ACS Appl. Polym. Mater.
2
,
1053
1060
(
2020
).
21.
Mayumi
,
K.
,
A.
Marcellan
,
G.
Ducouret
,
C.
Creton
, and
T.
Narita
, “
Stress–strain relationship of highly stretchable dual cross-link gels: Separability of strain and time effect
,”
ACS Macro Lett.
2
,
1065
1068
(
2013
).
22.
Cao
,
L.
,
J.
Huang
, and
Y.
Chen
, “
Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility
,”
ACS Sustainable Chem. Eng.
6
,
14802
14811
(
2018
).
23.
Gong
,
J. P.
,
Y.
Katsuyama
,
T.
Kurokawa
, and
Y.
Osada
, “
Double-network hydrogels with extremely high mechanical strength
,”
Adv. Mater.
15
,
1155
1158
(
2003
).
24.
Ducrot
,
E.
,
Y.
Chen
,
M.
Bulters
,
R. P.
Sijbesma
, and
C.
Creton
, “
Toughening elastomers with sacrificial bonds and watching them break
,”
Science
344
,
186
189
(
2014
).
25.
Honerkamp
,
J.
, and
J.
Weese
, “
A nonlinear regularization method for the calculation of relaxation spectra
,”
Rheol. Acta
32
,
65
73
(
1993
).
26.
Weese
,
J.
, “
A regularization method for nonlinear ill-posed problems
,”
Comput. Phys. Commun.
77
,
429
440
(
1993
).
27.
Van Gurp
,
M.
, and
J.
Palmen
, “
Time-temperature superposition for polymeric blends
,”
Rheol. Bull.
67
,
5
8
(
1998
).
28.
van Ruymbeke
,
E.
,
C.
Bailly
,
R.
Keunings
, and
D.
Vlassopoulos
, “
A general methodology to predict the linear rheology of branched polymers
,”
Macromolecules
39
,
6248
6259
(
2006
).
29.
Ahmadi
,
M.
,
C.
Bailly
,
R.
Keunings
,
M.
Nekoomanesh
,
H.
Arabi
, and
E.
van Ruymbeke
, “
Time marching algorithm for predicting the linear rheology of monodisperse comb polymer melts
,”
Macromolecules
44
,
647
659
(
2011
).
30.
Lentzakis
,
H.
,
S.
Costanzo
,
D.
Vlassopoulos
,
R. H.
Colby
,
D. J.
Read
,
H.
Lee
,
T.
Chang
, and
E.
van Ruymbeke
, “
Constraint release mechanisms for H-polymers moving in linear matrices of varying molar masses
,”
Macromolecules
52
,
3010
3028
(
2019
).
31.
Ahmadi
,
M.
,
A.
Jangizehi
,
E.
van Ruymbeke
, and
S.
Seiffert
, “
Deconvolution of the effects of binary associations and collective assemblies on the rheological properties of entangled side-chain supramolecular polymer networks
,”
Macromolecules
52
,
5255
5267
(
2019
).
32.
Hawke
,
L. G. D.
,
M.
Ahmadi
,
H.
Goldansaz
, and
E.
van Ruymbeke
, “
Viscoelastic properties of linear associating poly(n-butyl acrylate) chains
,”
J. Rheol.
60
,
297
310
(
2016
).
33.
Ahmadi
,
M.
,
L. G. D.
Hawke
,
H.
Goldansaz
, and
E.
van Ruymbeke
, “
Dynamics of entangled linear supramolecular chains with sticky side groups: Influence of hindered fluctuations
,”
Macromolecules
48
,
7300
7310
(
2015
).
34.
Zhuge
,
F.
,
L. G. D.
Hawke
,
C. A.
Fustin
,
J. F.
Gohy
, and
E.
van Ruymbeke
, “
Decoding the linear viscoelastic properties of model telechelic metallo-supramolecular polymers
,”
J. Rheol.
61
,
1245
1262
(
2017
).
35.
de Gennes
,
P. G.
, “
Reptation of a polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys.
55
,
572
579
(
1971
).
36.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
37.
Doi
,
M.
,
W. W.
Graessley
,
E.
Helfand
, and
D. S.
Pearson
, “
Dynamics of polymers in polydisperse melts
,”
Macromolecules
20
,
1900
1906
(
1987
).
38.
van Ruymbeke
,
E.
,
R.
Keunings
, and
C.
Bailly
, “
Prediction of linear viscoelastic properties for polydisperse mixtures of entangled star and linear polymers: Modified tube-based model and comparison with experimental results
,”
J. Non-Newtonian Fluid Mech.
128
,
7
22
(
2005
).
39.
Schwarzl
,
F. R.
, “
Numerical calculation of storage and loss modulus from stress relaxation data for linear viscoelastic materials
,”
Rheol. Acta
10
,
165
173
(
1971
).
40.
Likhtman
,
A. E.
, and
T. C. B.
McLeish
, “
Quantitative theory for linear dynamics of linear entangled polymers
,”
Macromolecules
35
,
6332
6343
(
2002
).
41.
Leibler
,
L.
,
M.
Rubinstein
, and
R. H.
Colby
, “
Dynamics of reversible networks
,”
Macromolecules
24
,
4701
4707
(
1991
).
42.
van Ruymbeke
,
E.
,
K.
Orfanou
,
M.
Kapnistos
,
H.
Iatrou
,
M.
Pitsikalis
,
N.
Hadjichristidis
,
D. J.
Lohse
, and
D.
Vlassopoulos
, “
Entangled dendritic polymers and beyond: Rheology of symmetric Cayley-tree polymers and macromolecular self-assemblies
,”
Macromolecules
40
,
5941
5952
(
2007
).
43.
Lamanna
,
G.
, and
A.
Basile
, “
Mechanics of soft PSAs (pressure sensitive adhesives)
,”
Open Mater. Sci. J.
7
,
23
28
(
2013
).
44.
Shabbir
,
A.
,
Q.
Huang
,
Q.
Chen
,
R. H.
Colby
,
N. J.
Alvarez
, and
O.
Hassager
, “
Brittle fracture in associative polymers: The case of ionomer melts
,”
Soft Matter
12
,
7606
7612
(
2016
).
45.
Shabbir
,
A.
,
Q.
Huang
,
G. P.
Baeza
,
D.
Vlassopoulos
,
Q.
Chen
,
R. H.
Colby
,
N. J.
Alvarez
, and
O.
Hassager
, “
Nonlinear shear and uniaxial extensional rheology of polyether-ester-sulfonate copolymer ionomer melts
,”
J. Rheol.
61
,
1279
1289
(
2017
).
46.
Yang
,
H.
,
S.
Wu
, and
Q.
Chen
, “
How to choose a secondary interaction to improve stretchability of associative polymers?
,”
Macromolecules
54
,
8112
8121
(
2021
).
47.
Lakrout
,
H.
,
C.
Creton
,
D.
Ahn
, and
K. R.
Shull
, “
Influence of molecular features on the tackiness of acrylic polymer melts
,”
Macromolecules
34
,
7448
7458
(
2001
).
48.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000406 for details of rheometric data (Van Gurp–Palmen plots, shift factors, creep data, master curves, in Figs. S1–S5) and modeling analysis and predictions (molar mass distributions, comparison with experiments, predictions with different parameter values, in Figs. S6–S9).
You do not currently have access to this content.