We study the linear viscoelastic properties of polymeric networks formed by poly(n-butyl acrylate) telechelic stars end-capped with 2,2:6,2″-terpyridine (Star-PnBA-tpy4) and two types of metal-ligand cross-links with different lifetimes. The influence of interactions, mediated by temperature, nature of metal ions, and ion content, on the linear viscoelastic behavior of both single and double dynamics transient networks is systematically investigated by small amplitude oscillatory shear and creep rheometry. The experimental results reveal that the dynamics of networks with two different metal-ligand cross-links is much faster than expected, characterized by the average sticker lifetime rather than a discrete contribution of each metal-ligand complex. We model the dynamics with the help of our modified tube-based time marching algorithm by accounting for both association/dissociation dynamics of metal-ligand coordination and the entanglement dynamics. Two parameters are defined in the model, namely, the proportion of dangling ends and the average time during which a sticker is free. This allows us to quantify the transient dynamics of the network and, in particular, to determine how the sticker dynamics depend on temperature and ion content.

1.
Enke
,
M.
,
S.
Bode
,
J.
Vitz
,
F. H.
Schacher
,
M. J.
Harrington
,
M. D.
Hager
, and
U. S.
Schubert
, “
Self-healing response in supramolecular polymers based on reversible zinc-histidine interactions
,”
Polymer
69
,
274
282
(
2015
).
2.
Byette
,
F.
,
A.
Laventure
,
I.
Marcotte
, and
C.
Pellerin
, “
Metal-ligand interactions and salt bridges as sacrificial bonds in mussel byssus-derived materials
,”
Biomacromolecules
17
(
10
),
3277
3286
(
2016
).
3.
Brassinne
,
J.
,
C.-A.
Fustin
, and
J.-F.
Gohy
, “
Polymer gels constructed through metal-ligand coordination
,”
J. Inorg. Organomet. Polym. Mater.
23
(
1
),
24
40
(
2012
).
4.
Shi
,
L. Y.
,
P. H.
Ding
,
Y. Z.
Wang
,
Y.
Zhang
,
D.
Ossipov
, and
J.
Hilborn
, “
Self-healing polymeric hydrogel formed by metal-ligand coordination assembly: Design, fabrication, and biomedical applications
,”
Macromol. Rapid Commun.
40
,
1800837
(
2019
).
5.
Riccardi
,
L.
,
V.
Genna
, and
M.
De Vivo
, “
Metal-ligand interactions in drug design
,”
Nat. Rev. Chem.
2
(
7
),
100
112
(
2018
).
6.
Winter
,
A.
, and
U. S.
Schubert
, “
Synthesis and characterization of metallo-supramolecular polymers
,”
Chem. Soc. Rev.
45
(
19
),
5311
5357
(
2016
).
7.
Staropoli
,
M.
,
A.
Raba
,
C. H.
Hövelmann
,
M.
Krutyeva
,
J.
Allgaier
,
M.-S.
Appavou
,
U.
Keiderling
,
F. J.
Stadler
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
, and
D.
Richter
, “
Hydrogen bonding in a reversible comb polymer architecture: A microscopic and macroscopic investigation
,”
Macromolecules
49
(
15
),
5692
5703
(
2016
).
8.
Jangizehi
,
A.
,
S. R.
Ghaffarian
, and
M.
Ahmadi
, “
Dynamics of entangled supramolecular polymer networks in presence of high-order associations of strong hydrogen bonding groups
,”
Polym. Adv. Technol.
29
(
2
),
726
735
(
2017
).
9.
Zhang
,
Z. J.
,
C.
Liu
,
X.
Cao
,
L. C.
Gao
, and
Q.
Chen
, “
Linear viscoelastic and dielectric properties of strongly hydrogen-bonded polymers near the sol-gel transition
,”
Macromolecules
49
(
23
),
9192
9202
(
2016
).
10.
Register
,
R. A.
, “
Morphology and structure-property relationships in random ionomers: Two foundational articles from macromolecules
,”
Macromolecules
53
(
5
),
1523
1526
(
2020
).
11.
Chen
,
Q.
,
G. J.
Tudryn
, and
R. H.
Colby
, “
Ionomer dynamics and the sticky Rouse model
,”
J. Rheol.
57
(
5
),
1441
1462
(
2013
).
12.
Pu
,
W. F.
,
F.
Jiang
,
B.
Wei
,
Y. L.
Tang
, and
Y. Y.
He
, “
A gel-like comb micro-block hydrophobic associating polymer: Synthesis, solution property and the sol-gel transition at semi-dilute region
,”
Macromol. Res.
25
(
2
),
151
157
(
2017
).
13.
Aubry
,
T.
, and
M.
Moan
, “
Rheological behavior of a hydrophobically associating water soluble polymer
,”
J. Rheol.
38
(
6
),
1681
1692
(
1994
).
14.
Noro
,
A.
,
M.
Hayashi
, and
Y.
Matsushita
, “
Design and properties of supramolecular polymer gels
,”
Soft Matter
8
(
24
),
6416
6429
(
2012
).
15.
McConnell
,
A. J.
,
C. S.
Wood
,
P. P.
Neelakandan
, and
J. R.
Nitschke
, “
Stimuli-responsive metal-ligand assemblies
,”
Chem. Rev.
115
(
15
),
7729
7793
(
2015
).
16.
Beck
,
J. B.
,
J. M.
Ineman
, and
S. J.
Rowan
, “
Metal/ligand-induced formation of metallo-supramolecular polymers
,”
Macromolecules
38
(
12
),
5060
5068
(
2005
).
17.
Mozhdehi
,
D.
,
J. A.
Neal
,
S. C.
Grindy
,
Y.
Cordeau
,
S.
Ayala
,
N.
Holten-Andersen
, and
Z. B.
Guan
, “
Tuning dynamic mechanical response in metallopolymer networks through simultaneous control of structural and temporal properties of the networks
,”
Macromolecules
49
(
17
),
6310
6321
(
2016
).
18.
Loveless
,
D. M.
,
S. L.
Jeon
, and
S. L.
Craig
, “
Rational control of viscoelastic properties in multicomponent associative polymer networks
,”
Macromolecules
38
(
24
),
10171
10177
(
2005
).
19.
Yount
,
W. C.
,
D. M.
Loveless
, and
S. L.
Craig
, “
Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively crosslinked polymer networks
,”
J. Am. Chem. Soc.
127
(
41
),
14488
14496
(
2005
).
20.
Guillet
,
P.
,
C.
Mugemana
,
F. J.
Stadler
,
U. S.
Schubert
,
C.-A.
Fustin
,
C.
Bailly
, and
J.-F.
Gohy
, “
Connecting micelles by metallo-supramolecular interactions: Towards stimuli responsive hierarchical materials
,”
Soft Matter
5
(
18
),
3409
3411
(
2009
).
21.
Brassinne
,
J.
,
A. M.
Stevens
,
E.
Van Ruymbeke
,
J.-F.
Gohy
, and
C.-A.
Fustin
, “
Hydrogels with dual relaxation and two-step gel-sol transition from heterotelechelic polymers
,”
Macromolecules
46
(
22
),
9134
9143
(
2013
).
22.
Nair
,
K. P.
,
V.
Breedveld
, and
M.
Weck
, “
Multiresponsive reversible polymer networks based on hydrogen bonding and metal coordination
,”
Macromolecules
44
(
9
),
3346
3357
(
2011
).
23.
Narita
,
T.
,
K.
Mayumi
,
G.
Ducouret
, and
P.
Hébraud
, “
Viscoelastic properties of poly(vinyl alcohol) hydrogels having permanent and transient crosslinks studied by microrheology, classical rheometry, and dynamic light scattering
,”
Macromolecules
46
(
10
),
4174
4183
(
2013
).
24.
Yang
,
H.
,
S.
Ghiassinejad
,
E.
van Ruymbeke
, and
C.-A.
Fustin
, “
Tunable interpenetrating polymer network hydrogels based on dynamic covalent bonds and metal-ligand bonds
,”
Macromolecules
53
(
16
),
6956
6967
(
2020
).
25.
Grindy
,
S. C.
,
R.
Learsch
,
D.
Mozhdehi
,
J.
Cheng
,
D. G.
Barrett
,
Z. B.
Guan
,
P. B.
Messersmith
, and
N.
Holten-Andersen
, “
Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics
,”
Nat. Mater.
14
(
12
),
1210
1216
(
2015
).
26.
Kobayashi
,
Y.
,
T.
Hirase
,
Y.
Takashima
,
A.
Harada
, and
H.
Yamaguchi
, “
Self-healing and shape-memory properties of polymeric materials crosslinked by hydrogen bonding and metal-ligand interactions
,”
Polym. Chem.
10
,
4519
4523
(
2019
).
27.
Dutta
,
A.
, and
R. K.
Das
, “
Dual crosslinked hydrogels with high strength, toughness, and rapid self-recovery using dynamic metal-ligand interactions
,”
Macromol. Mater. Eng.
304
(
8
),
1900195
(
2019
).
28.
Wang
,
Z. H.
,
C.
Xie
,
C. J.
Yu
,
G. X.
Fei
,
Z. H.
Wang
, and
H. S.
Xia
, “
A facile strategy for self-healing polyurethanes containing multiple metal-ligand bonds
,”
Macromol. Rapid Commun.
39
(
6
),
1700678
(
2018
).
29.
Grindy
,
S. C.
,
M.
Lenz
, and
N.
Holten-Andersen
, “
Engineering elasticity and relaxation time in metal-coordinate cross-linked hydrogels
,”
Macromolecules
49
(
21
),
8306
8312
(
2016
).
30.
Fullenkamp
,
D. E.
,
L.
He
,
D. G.
Barrett
,
W. R.
Burghardt
, and
P. B.
Messersmith
, “
Mussel-inspired histidine-based transient network metal coordination hydrogels
,”
Macromolecules
46
(
3
),
1167
1174
(
2013
).
31.
Cazzell
,
S. A.
, and
N.
Holten-Andersen
, “
Expanding the stoichiometric window for metal cross-linked gel assembly using competition
,”
Proc. Natl. Acad. Sci. U.S.A.
116
(
43
),
21369
21374
(
2019
).
32.
Schmolke
,
W.
,
M.
Ahmadi
, and
S.
Seiffert
, “
Enhancement of metallo-supramolecular dissociation kinetics in telechelic terpyridine-capped poly(ethylene glycol) assemblies in the semi-dilute regime
,”
Phys. Chem. Chem. Phys.
21
,
19623
19638
(
2019
).
33.
van Ruymbeke
,
E.
,
D.
Vlassopoulos
,
M.
Mierzwa
,
T.
Pakula
,
D.
Charalabidis
,
M.
Pitsikalis
, and
N.
Hadjichristidis
, “
Rheology and structure of entangled telechelic linear and star polyisoprene melts
,”
Macromolecules
43
(
9
),
4401
4411
(
2010
).
34.
Zhuge
,
F.
,
J.
Brassinne
,
C.-A.
Fustin
,
E.
van Ruymbeke
, and
J.-F.
Gohy
, “
Synthesis and rheology of bulk metallo-supramolecular polymers from telechelic entangled precursors
,”
Macromolecules
50
(
13
),
5165
5175
(
2017
).
35.
Zhuge
,
F.
,
L. G. D.
Hawke
,
C.-A.
Fustin
,
J.-F.
Gohy
, and
E.
van Ruymbeke
, “
Decoding the linear viscoelastic properties of model telechelic metallo-supramolecular polymers
,”
J. Rheol.
61
(
6
),
1245
1262
(
2017
).
36.
van Ruymbeke
,
E.
,
R.
Keunings
, and
C.
Bailly
, “
Prediction of linear viscoelastic properties for polydisperse mixtures of entangled star and linear polymers: Modified tube-based model and comparison with experimental results
,”
J. Non-Newtonian Fluid Mech.
128
(
1
),
7
22
(
2005
).
37.
van Ruymbeke
,
E.
,
C.
Bailly
,
R.
Keunings
, and
D.
Vlassopoulos
, “
A general methodology to predict the linear rheology of branched polymers
,”
Macromolecules
39
(
18
),
6248
6259
(
2006
).
38.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
, 3rd ed. (
Wiley
,
New York
,
1980
).
39.
Honerkamp
,
J.
, and
J.
Weese
, “
A nonlinear regularization method for the calculation of relaxation spectra
,”
Rheol. Acta
32
,
65
73
(
1993
).
40.
Ruymbeke
,
E. v.
,
E. B.
Muliawan
,
D.
Vlassopoulos
,
H.
Gao
, and
K.
Matyjaszewski
, “
Melt rheology of star polymers with large number of small arms, prepared by crosslinking poly(n-butyl acrylate) macromonomers via ATRP
,”
Eur. Polym. J.
47
,
746
751
(
2011
).
41.
Walsh
,
D.
, and
P.
Zoller
,
Standard Pressure-Volume-Temperature Data for Polymers
(
CRC
,
Lancaster
,
1995
).
42.
Schwarzl
,
F. R.
, “
Numerical calculation of storage and loss modulus from stress relaxation data for linear viscoelastic materials
,”
Rheol. Acta
10
,
165
173
(
1971
).
43.
Lewis
,
R.
,
N.
Malic
,
K.
Saito
,
R. A.
Evans
, and
N. R.
Cameron
, “
Ultra-high molecular weight linear coordination polymers with terpyridine ligands
,”
Chem. Sci.
10
,
6174
6183
(
2019
).
44.
Amin
,
D.
,
A. E.
Likhtman
, and
Z.
Wang
, “
Dynamics in supramolecular polymer networks formed by associating telechelic chains
,”
Macromolecules
49
,
7510
7524
(
2016
).
45.
Schneider
,
S.
,
G.
Brehm
,
C.-J.
Prenzel
,
W.
Jäger
,
M. I.
Silva
,
H. D.
Burrows
, and
S. T.
Formosinho
, “
Vibrational spectra, normal coordinate analysis and excited-state lifetimes for a series of polypyridylruthenium(II) complexes
,”
J. Raman Spectrosc.
27
,
163
175
(
1996
).
46.
Lohmeijer
,
B. G. G.
,
Playing LEGO with macromolecules: Connecting polymer chains using terpyridine metal complexes
,
Ph.D. thesis
,
Eindhoven University of Technology
,
2004
.
47.
Yesilyurt
,
V.
,
A. M.
Ayoob
,
E. A.
Appel
,
J. T.
Borenstein
,
R.
Langer
, and
D. G.
Anderson
, “
Mixed reversible covalent crosslink kinetics enable precise, hierarchical mechanical tuning of hydrogel networks
,”
Adv. Mater.
29
(
19
),
1605947
(
2017
).
48.
Chen
,
H.
,
J.
Zhang
,
W.
Yu
,
Y.
Cao
,
Z.
Cao
, and
Y.
Tan
, “
Control viscoelasticity of polymer networks with crosslinks of superposed fast and slow dynamics
,”
Angew. Chem., Int. Ed.
60
(
41
),
22332
22338
(
2021
).
49.
Holyer
,
R. H.
,
C. D.
Hubbard
,
S. F. A.
Kettle
, and
R. G.
Wilkins
, “
The kinetics of replacement reactions of complexes of the transition metals with 2,2’,2"-terpyridine
,”
Inorg. Chem.
5
(
4
),
622
625
(
1966
).
50.
Cali
,
R.
,
E.
Rizzarelli
,
S.
Sammartano
, and
G.
Siracusa
, “
Thermodynamics of 2,2':6’,2"-terpyridinecopper(II) complexes in aqueous solution
,”
Transition Met. Chem.
4
(
5
),
328
332
(
1979
).
51.
Andres
,
P. R.
,
H.
Hofmeier
, and
U. S.
Schubert
, “
Complexation parameters of terpyridine-metal complexes
,”
ACS Symp. Ser.
928
,
141
156
(
2006
).
You do not currently have access to this content.