Existing single-chain models for unentangled associating polymers account for the association by assigning the sticky junctions a large value of the monomeric friction coefficient, which prevents them from moving in space unless stickers effectively dissociate. With such an assumption, comparison of model predictions with linear viscoelastic data is not fully successful in the intermediate range of frequency. In this work, we improve agreement with data by developing a single-chain model where sticky junctions are allowed to quickly move in space without dissociating. We also account for a random distribution of the stickers but differently from the recent model by Jiang et al. [Macromolecules 53, 3438–3451 (2020)]. Predictions of the model are successfully compared with unentangled melt data for two different copolymer chemistries and different sticker concentrations. Particularly significant are the data by Cui et al. [J. Rheol., 62, 1155–1174 (2018)] of melts of polymers with only two stickers per chain, revealing that sticky junctions are in fact also endowed with fast mobility.

1.
Green
,
M. S.
, and
A. V.
Tobolsky
, “
A new approach to the theory of relaxing polymeric media
,”
J. Chem. Phys.
14
,
80
92
(
1946
).
2.
Zhang
,
Z.
,
Q.
Chen
, and
R. H.
Colby
, “
Dynamics of associative polymers
,”
Soft Matter
14
,
2961
2977
(
2018
).
3.
Baxandall
,
L. G.
, “
Dynamics of reversibly crosslinked chains
,”
Macromolecules
22
,
1982
1988
(
1989
).
4.
Rubinstein
,
M.
, and
A. N.
Semenov
, “
Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics
,”
Macromolecules
31
,
1386
1397
(
1998
).
5.
Leibler
,
L.
,
M.
Rubinstein
, and
R. H.
Colby
, “
Dynamics of reversible networks
,”
Macromolecules
24
,
4701
4707
(
1991
).
6.
Indei
,
T.
, and
J.
Takimoto
, “
Linear viscoelastic properties of transient networks formed by associating polymers with multiple stickers
,”
J. Chem. Phys.
133
,
194902
(
2010
).
7.
Chen
,
Q.
,
G. J.
Tudryn
, and
R. H.
Colby
, “
Ionomer dynamics and the sticky Rouse model
,”
J. Rheol.
57
,
1441
1462
(
2013
).
8.
Shabbir
,
A.
,
I.
Javakhishvili
,
S.
Cerveny
,
S.
Hvilsted
,
A. L.
Skov
,
O.
Hassager
, and
N. J.
Alvarez
, “
Linear viscoelastic and dielectric relaxation response of unentangled UPy-based supramolecular networks
,”
Macromolecules
49
,
3899
3910
(
2016
).
9.
Cui
,
G.
,
V. A. H.
Boudara
,
Q.
Huang
,
G. P.
Baeza
,
A. J.
Wilson
,
O.
Hassager
,
D. J.
Read
, and
J.
Mattsson
, “
Linear shear and nonlinear extensional rheology of unentangled supramolecular side-chain polymers
,”
J. Rheol.
62
,
1155
1174
(
2018
).
10.
Jiang
,
N.
,
H.
Zhang
,
P.
Tang
, and
Y.
Yang
, “
Linear viscoelasticity of associative polymers: Sticky Rouse model and the role of bridges
,”
Macromolecules
53
,
3438
3451
(
2020
).
11.
Ricarte
,
R. G.
, and
S.
Shanbhag
, “
Unentangled vitrimer melts: Interplay between chain relaxation and cross-link exchange controls linear rheology
,”
Macromolecules
54
,
3304
3320
(
2021
).
12.
Jiang
,
N.
,
H.
Zhang
,
Y.
Yang
, and
P.
Tang
, “
Molecular dynamics simulation of associative polymers: Understanding linear viscoelasticity from the sticky Rouse model
,”
J. Rheol.
65
,
527
547
(
2021
).
13.
Lewis
,
C. L.
,
K.
Stewart
, and
M.
Anthamatten
, “
The influence of hydrogen bonding side-groups on viscoelastic behavior of linear and network polymers
,”
Macromolecules
47
,
729
740
(
2014
).
14.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
15.
Cocchini
,
F.
, and
M.
Nobile
, “
Constrained inversion of rheological data to molecular weight distribution for polymer melts
,”
Rheol. Acta
42
,
232
242
(
2003
).
16.
van Ruymbeke
,
E.
,
R.
Keunings
, and
C.
Bailly
, “
Determination of the molecular weight distribution of entangled linear polymers from linear viscoelasticity data
,”
J. Non-Newtonian Fluid Mech.
105
,
153
175
(
2002
).
17.
Likhtman
,
A. E.
,
Viscoelasticity and molecular rheology
, in
Polymer Science: A Comprehensive Reference
(
Elsevier
,
New York
,
2012
), Vol. 1, pp.
133
179
.
18.
Sridhar
,
T.
,
M.
Acharya
,
D. A.
Nguyen
, and
P. K.
Bhattacharjee
, “
On the extensional rheology of polymer melts and concentrated solutions
,”
Macromolecules
47
,
379
386
(
2014
).
19.
Kapnistos
,
M.
,
D.
Vlassopoulos
,
J.
Roovers
, and
L. G.
Leal
, “
Linear rheology of architecturally complex macromolecules: Comb polymers with linear backbones
,”
Macromolecules
38
,
7852
7862
(
2005
).
20.
Watanabe
,
H.
, “
Viscoelasticity and dynamics of entangled polymers
,”
Prog. Polym. Sci.
24
,
1253
1403
(
1999
).
21.
Masubuchi
,
Y.
,
J.-I.
Takimoto
,
K.
Koyama
,
G.
Ianniruberto
,
G.
Marrucci
, and
F.
Greco
, “
Brownian simulations of a network of reptating primitive chains
,”
J. Chem. Phys.
115
,
4387
4394
(
2001
).
22.
Chappa
,
V. C.
,
D. C.
Morse
,
A.
Zippelius
, and
M.
Müller
, “
Translationally invariant slip-spring model for entangled polymer dynamics
,”
Phys. Rev. Lett.
109
,
148302
(
2012
).
23.
Uneyama
,
T.
, and
Y.
Masubuchi
, “
Multi-chain slip-spring model for entangled polymer dynamics
,”
J. Chem. Phys.
137
,
154902
(
2012
).
24.
Langeloth
,
M.
,
Y.
Masubuchi
,
M. C.
Böhm
, and
F.
Müller-Plathe
, “
Recovering the reptation dynamics of polymer melts in dissipative particle dynamics simulations via slip-springs
,”
J. Chem. Phys.
138
,
104907
(
2013
).
25.
Ramírez-Hernández
,
A.
,
F. A.
Detcheverry
,
B. L.
Peters
,
V. C.
Chappa
,
K. S.
Schweizer
,
M.
Müller
, and
J. J.
de Pablo
, “
Dynamical simulations of coarse grain polymeric systems: Rouse and entangled dynamics
,”
Macromolecules
46
,
6287
6299
(
2013
).
26.
Masubuchi
,
Y.
, “
Simulating the flow of entangled polymers
,” in
Annual Review of Chemical and Biomolecular Engineering
, edited by
J. M.
Prausnitz
,
M. F.
Doherty
, and
R. A.
Segalman
(Annual Reviews, Palo Alto,
2014
), Vol.
5
, pp.
11
33
.
You do not currently have access to this content.