The dynamics of polymer chains in entangled semidilute solution have been of theoretical and experimental interest. Among a number of characteristic lengths and times of the polymer in solution, those of the correlation blob are the key to understand the applicability of the Rouse and Zimm models to rheology of the semidilute solution. Direct rheological measurements of Rouse and Zimm modes are limited as the corresponding time scale is out of the range of classical rheological techniques. We investigated the single chain dynamics of entangled poly(ethylene oxide) in semidilute aqueous solutions by high-frequency micro-rheology based on diffusing-wave spectroscopy compared to classical shear macro-rheology. Concentration dependence of the three characteristic times of the entangled polymer chains, reptation time, entanglement time, and correlation time, was studied with the help of the time-concentration superposition. At the low frequency range, dynamic moduli measured by macro-rheology and micro-rheology showed a good agreement without adjustable parameters. At the higher frequency range, we found the Rouse regime in the mean square displacement of the probe particles and in the magnitude of the complex specific viscosity of the solution. We propose a simple method to estimate the boundary of the Rouse regime. Finally, at the high frequency range, we demonstrate that the contribution of the solvent to the solution viscosity needs to be subtracted to observe the power-law behavior of the Zimm mode.

1.
Mason
,
T. G.
, and
D. A.
Weitz
, “
Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids
,”
Phys. Rev. Lett.
74
,
1250
1253
(
1995
).
2.
Mason
,
T. G.
,
K.
Ganesan
,
J. H.
van Zanten
,
D.
Wirtz
, and
S. C.
Kuo
, “
Particle tracking microrheology of complex fluids
,”
Phys. Rev. Lett.
79
,
3282
3285
(
1997
).
3.
Buchanan
,
M.
,
M.
Atakhorrami
,
J. F.
Palierne
,
F. C.
MacKintosh
, and
C. F.
Schmidt
, “
High-frequency microrheology of wormlike micelles
,”
Phys. Rev. E
72
,
011504
(
2005
).
4.
Squires
,
T. M.
, and
T. G.
Mason
, “
Fluid mechanics of microrheology
,”
Annu. Rev. Fluid Mech.
42
,
413
438
(
2010
).
5.
Willenbacher
,
N.
, and
C.
Oelschlaeger
, “
Dynamics and structure of complex fluids from high frequency mechanical and optical rheometry
,”
Curr. Opin. Colloid Interface Sci.
12
,
43
49
(
2007
).
6.
Tassieri
,
M.
,
M.
Laurati
,
D. J.
Curtis
,
D. W.
Auhl
,
S.
Coppola
,
A.
Scalfati
,
K.
Hawkins
,
P. R.
Williams
, and
J. M.
Cooper
, “
i-Rheo: Measuring the materials’ linear viscoelastic properties ‘in a step’!
,”
J. Rheol.
60
,
649
660
(
2016
).
7.
Mason
,
T. G.
,
H.
Gang
, and
D. A.
Weitz
, “
Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids
,”
J. Opt. Soc. Am. A
14
,
139
149
(
1997
).
8.
Dasgupta
,
B. R.
,
S.-Y.
Tee
,
J. C.
Crocker
,
B. J.
Frisken
, and
D. A.
Weitz
, “
Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering
,”
Phys. Rev. E
65
,
051505
(
2002
).
9.
van Zanten
,
J. H.
,
S.
Amin
, and
A. A.
Abdala
, “
Brownian motion of colloidal spheres in aqueous PEO solutions
,”
Macromolecules
37
,
3874
3880
(
2004
).
10.
Abdala
,
A. A.
,
S.
Amin
,
J. H.
van Zanten
, and
S. A.
Khan
, “
Tracer microrheology study of a hydrophobically modified comblike associative polymer
,”
Langmuir
31
,
3944
3951
(
2015
).
11.
Krajina
,
B. A.
,
C.
Tropini
,
A.
Zhu
,
P.
DiGiacomo
,
J. L.
Sonnenburg
,
S. C.
Heilshorn
, and
A. J.
Spakowitz
, “
Dynamic light scattering microrheology reveals multiscale viscoelasticity of polymer gels and precious biological materials
,”
ACS Cent. Sci.
3
,
1294
1303
(
2017
).
12.
Koziol
,
M.
,
K.
Fischer
, and
S.
Seiffert
, “
Origin of the low-frequency plateau and the lightscattering slow mode in semidilute poly(ethylene glycol) solutions
,”
Soft Matter
15
,
2666
2676
(
2019
).
13.
Cai
,
P. C.
,
B. A.
Krajina
,
M. J.
Kratochvil
,
L.
Zou
,
A.
Zhu
,
E. B.
Burgener
,
P. L.
Bollyky
,
C. E.
Milla
,
M. J.
Webber
,
A. J.
Spakowitz
, and
S. C.
Heilshorn
, “
Dynamic light scattering microrheology for soft and living materials
,”
Soft Matter
17
,
1929
1939
(
2021
).
14.
Palmer
,
A.
,
T. G.
Mason
,
J.
Xu
,
S. C.
Kuo
, and
D.
Wirtz
, “
Diffusing wave spectroscopy microrheology of actin filament networks
,”
Biophys. J.
76
,
1063
1071
(
1999
).
15.
Amblard
,
F.
,
A.
Maggs
,
B.
Yurke
,
A. N.
Pargellis
, and
S.
Leibler
, “
Subdiffusion and anomalous local viscoelasticity in actin networks
,”
Phys. Rev. Lett.
77
,
4470
4473
(
1996
).
16.
Gittes
,
F.
,
B.
Schnurr
,
P. D.
Olmsted
,
F. C.
MacKintosh
, and
C. F.
Schmidt
, “
Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations
,”
Phys. Rev. Lett.
79
,
3286
3289
(
1997
).
17.
Gisler
,
T.
, and
D. A.
Weitz
, “
Scaling of the microrheology of semidilute f-actin solutions
,”
Phys. Rev. Lett.
82
,
1606
1609
(
1999
).
18.
Willenbacher
,
N.
,
C.
Oelschlaeger
,
M.
Schopferer
,
P.
Fischer
,
F.
Cardinaux
, and
F.
Scheffold
, “
Broad bandwidth optical and mechanical rheometry of wormlike micelle solutions
,”
Phys. Rev. Lett.
99
,
068302
(
2007
).
19.
Oelschlaeger
,
C.
,
M. C. P.
Coelho
, and
N.
Willenbacher
, “
Chain flexibility and dynamics of polysaccharide hyaluronan in entangled solutions: A high frequency rheology and diffusing wave spectroscopy study
,”
Biomacromolecules
14
,
3689
3696
(
2013
).
20.
Papagiannopoulos
,
A.
,
C. M.
Fernyhough
, and
T. A.
Waigh
, “
The microrheology of polystyrene sulfonate combs in aqueous solution
,”
J. Chem. Phys.
123
,
214904
(
2005
).
21.
Papagiannopoulos
,
A.
,
T. A.
Waigh
,
T.
Hardingham
, and
M.
Heinrich
, “
Solution structure and dynamics of cartilage aggrecan
,”
Biomacromolecules
7
,
2162
2172
(
2006
).
22.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
, 3rd ed. (
Wiley
,
New York
,
1980
).
23.
Johnson
,
R. M.
,
J. L.
Schrag
, and
J. D.
Ferry
, “
Infinite-dilution viscoelastic properties of polystyrene in θ-solvents and good solvents
,”
Polym. Jpn.
1
,
742
749
(
1970
).
24.
Hair
,
D. W.
, and
E. J.
Amis
, “
Intrinsic dynamic viscoelasticity of polystyrene in and good solvents
,”
Macromolecules
22
,
4528
4536
(
1989
).
25.
Lodge
,
A. S.
, and
Y.
jing Wu
, “
Constitutive equations for polymer solutions derived from the bead/spring model of Rouse and Zimm
,”
Rheol. Acta
10
,
539
553
(
1971
).
26.
Devanand
,
K.
, and
J. C.
Selser
, “
Asymptotic behavior and long-range interactions in aqueous solutions of poly(ethylene oxide)
,”
Macromolecules
24
,
5943
5947
(
1991
).
27.
Daga
,
V. K.
, and
N. J.
Wagner
, “
Linear viscoelastic master curves of neat and laponite-filled poly(ethylene oxide)-water solutions
,”
Rheol. Acta
45
,
813
824
(
2006
).
28.
Ebagninin
,
K. W.
,
A.
Benchabane
, and
K.
Bekkour
, “
Rheological characterization of poly(ethylene oxide) solutions of different molecular weights
,”
J. Colloid Interface Sci.
336
,
360
367
(
2009
).
29.
Rivero
,
D.
,
L. M.
Gouveia
,
A. J.
Müller
, and
A. E.
Sáez
, “
Shear-thickening behavior of high molecular weight poly(ethylene oxide) solutions
,”
Rheol. Acta
51
,
13
20
(
2012
).
30.
Gratz
,
M.
, and
A.
Tschöpe
, “
Size effects in the oscillatory rotation dynamics of Ni nanorods in poly(ethylene oxide) solutions
,”
Macromolecules
52
,
6600
6612
(
2019
).
31.
Baumgärtel
,
M.
, and
N.
Willenbacher
, “
The relaxation of concentrated polymer solutions
,”
Rheol. Acta
35
,
168
185
(
1996
).
32.
Rouse
,
P. E.
, “
A theory of the linear viscoelastic properties of dilute solutions of coiling polymers
,”
J. Chem. Phys.
21
,
1272
1280
(
1953
).
33.
de Gennes
,
P. G.
,
Scaling Concepts in Polymer Physics
(
Cornell University
,
Cornell, NY
,
1979
).
34.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
, 1st ed. (
Oxford University
,
New York
,
2003
).
35.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
, 1st ed. (
Oxford University
,
Oxford
,
1986
).
36.
Zimm
,
B. H.
, “
Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss
,”
J. Chem. Phys.
24
,
269
278
(
1956
).
37.
Equation (10) is obtained by taking the one-sided Fourier transform of the relaxation modulus and by ignoring proportionality constant.
38.
Kato
,
T.
,
K.
Nakamura
,
M.
Kawaguchi
, and
A.
Takahashi
, “
Quasielastic light scattering measurements of polystyrene latices and conformation of poly(oxyethylene) adsorbed on the latices
,”
Polym. J.
13
,
1037
1043
(
1981
).
39.
Kawaguchi
,
S.
,
G.
Imait
,
J.
Suzuki
,
A.
Miyahara
,
T.
Kitanoll
, and
K.
Ito
, “
Aqueous solution properties of oligo- and poly(ethylene oxide) by static light scattering and intrinsic viscosity
,”
Polymer
38
,
2885
2891
(
1997
).
40.
Weitz
,
D. A.
, and
D. J.
Pine
, “Diffusing-wave spectroscopy,” in Dynamic Light Scattering: The Method and Some Applications, edited by W. Brown (Oxford University, New York, 1993), Chap. 16, pp. 652–720.
41.
Pinder
,
D. N.
,
A. J.
Swanson
,
P.
Hebraud
, and
Y.
Hemar
, “
Micro-rheological investigation of dextran solutions using diffusing wave spectroscopy
,”
Food Hydrocolloids
20
,
240
244
(
2006
).
42.
Indei
,
T.
,
J. D.
Schieber
,
A.
Córdoba
, and
E.
Pilyugina
, “
Treating inertia in passive microbead rheology
,”
Phys. Rev. E
85
,
021504
(
2012
).
43.
Indei
,
T.
,
J. D.
Schieber
, and
A.
Córdoba
, “
Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology
,”
Phys. Rev. E
85
,
041504
(
2012
).
44.
Evans
,
R. M. L.
,
M.
Tassieri
,
D.
Auhl
, and
T. A.
Waigh
, “
Direct conversion of rheological compliance measurements into storage and loss moduli
,”
Phys. Rev. E
80
,
012501
(
2009
).
45.
Tassieri
,
M.
,
R. M. L.
Evans
,
R. L.
Warren
,
N. J.
Bailey
, and
J. M.
Cooper
, “
Microrheology with optical tweezers: Data analysis
,”
New J. Phys.
14
,
115032
(
2012
).
46.
Karim
,
M.
,
S. C.
Kohale
,
T.
Indei
,
J. D.
Schieber
, and
R.
Khare
, “
Determination of viscoelastic properties by analysis of probe-particle motion in molecular simulations
,”
Phys. Rev. E
86
,
051501
(
2012
).
47.
Karim
,
M.
,
T.
Indei
,
J. D.
Schieber
, and
R.
Khare
, “
Determination of linear viscoelastic properties of an entangled polymer melt by probe rheology simulations
,”
Phys. Rev. E
93
,
012501
(
2016
).
48.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000402 for the molecular weight dependence of the intrinsic viscosity of PEO in water at 25 °C.
49.
Cai
,
L.-H.
,
S.
Panyukov
, and
M.
Rubinstein
, “
Mobility of nonsticky nanoparticles in polymer liquids
,”
Macromolecules
44
,
7853
7863
(
2011
).
50.
In Fig. 8 left, red dashed line indicates ξ=bCpν/(3ν1) with ν=0.588 where prefactor b was estimated by fitting with data (red dots), and blue dashed line represents a=bNe(1)Cpν/(3ν1) with Ne(1)=13 and the same b. The values of b shown in text was derived from this b by changing the polymer concentration from Cp to ϕ.
51.
Oesterhelt
,
F.
,
M.
Rief
, and
H. E.
Gaub
, “
Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water
,”
New J. Phys.
1
,
61
611
(
1999
).
52.
In Fig. 8 right, red dashed line indicates τξ=τ0Cp3ν/(3ν1) where prefactor τ0 was estimated by fitting with data (red dots), and blue dashed line represents τe=τ0Ne(1)2Cp3ν/(3ν1) with the same τ0. The values of τ0 shown in text was derived from this τ0 by changing the polymer concentration from Cp to ϕ.
You do not currently have access to this content.