Hydrogels are polymer networks swollen in water and, therefore, suitable for biomedical applications. For this purpose, hydrogels have to mimic the functionality and mechanics of natural tissues. In drug delivery, for example, the diffusion is crucial and can be controlled through targeted variation of the network mesh-size. In tissue engineering, on the other side, the mechanics plays a fundamental role and can be strengthened through the use of two interpenetrated polymer networks, realizing a double network, or with two dynamic motifs anchored in one common network, realizing a dual dynamic network (DDN). However, current knowledge encompasses mainly nonlinear rheological characterization of these networks. We intend to fill this gap and provide a systematic linear rheological study. To realize this strategy, we combine two supramolecular motifs in a common network, thereby realizing a comblike DDN with the ability to change the building blocks on demand. In our DDN, a tetra-poly(ethylene) glycol (pEG) (the first building block) is functionalized on each arm with two dynamic motifs: terpyridine capable of undergoing metal-complexation with different divalent metal ions, and a thermo-responsive unit consisting of poly(N-isopropylacrylamide) (pNIPAAm) (the second building block) that is capable of undergoing temperature-dependent nano-phase-separation. In particular, we change the molar mass of the tetra-pEG-terpyridine and the pNIPAAm grafted chains. In addition, we investigate two different metal ions that form complexes with the terpyridine. With this platform, we tune the elastic properties on demand, and we systematically study the structure–property relationships with oscillatory shear rheology in the linear regime.

1.
Sood
,
N.
,
A.
Bhardwaj
,
S.
Mehta
, and
A.
Mehta
, “
Stimuli-responsive hydrogels in drug delivery and tissue engineering
,”
Drug Delivery
23
,
748
770
(
2016
).
2.
Mantha
,
S.
,
S.
Pillai
,
P.
Khayambashi
,
A.
Upadhyay
,
Y.
Zhang
,
O.
Tao
,
H. M.
Pham
, and
S. D.
Tran
, “
Smart hydrogels in tissue engineering and regenerative medicine
,”
Materials
12
,
3323
(
2019
).
3.
Guimarães
,
C. F.
,
L.
Gasperini
,
A. P.
Marques
, and
R. L.
Reis
, “
The stiffness of living tissues and its implications for tissue engineering
,”
Nat. Rev. Mater.
5
,
351
370
(
2020
).
4.
Li
,
J.
, and
D. J.
Mooney
, “
Designing hydrogels for controlled drug delivery
,”
Nat. Rev. Mater.
1
,
16071
(
2016
).
5.
Dong
,
P.
,
B. J.
Schott
,
A. K.
Means
, and
M. A.
Grunlan
, “
Comb architecture to control the selective diffusivity of a double network hydrogel
,”
ACS Appl. Polym. Mater.
2
,
5269
5277
(
2020
).
6.
Nicolella
,
P.
,
D.
Lauxen
,
M.
Ahmadi
, and
S.
Seiffert
, “
Reversible hydrogels with switchable diffusive permeability
,”
Macromol. Chem. Phys.
222
,
2100076
(
2021
).
7.
Gong
,
J. P.
,
Y.
Katsuyama
,
T.
Kurokawa
, and
Y.
Osada
, “
Double-network hydrogels with extremely high mechanical strength
,”
Adv. Mater.
15
,
1155
1158
(
2003
).
8.
Narita
,
T.
,
K.
Mayumi
,
G.
Ducouret
, and
P.
Hébraud
, “
Viscoelastic properties of poly(vinyl alcohol) hydrogels having permanent and transient cross-links studied by microrheology, classical rheometry, and dynamic light scattering
,”
Macromolecules
46
,
4174
4183
(
2013
).
9.
Chen
,
Q.
,
H.
Chen
,
L.
Zhu
, and
J.
Zheng
, “
Engineering of tough double network hydrogels
,”
Macromol. Chem. Phys.
217
,
1022
1036
(
2016
).
10.
Li
,
X.
,
Q.
Yang
,
Y.
Zhao
,
S.
Long
, and
J.
Zheng
, “
Dual physically crosslinked double network hydrogels with high toughness and self-healing properties
,”
Soft Matter
13
,
911
920
(
2017
).
11.
Rossow
,
T.
,
A.
Habicht
, and
S.
Seiffert
, “
Relaxation and dynamics in transient polymer model networks
,”
Macromolecules
47
,
6473
6482
(
2014
).
12.
Najafi
,
M.
,
E.
Hebels
,
W. E.
Hennink
, and
T.
Vermonden
, “
Poly(N-isopropylacrylamide): Physicochemical properties and biomedical applications
,” in
Temperature-Responsive Polymers: Chemistry, Properties, and Applications
(
Wiley
,
New York
,
2018
).
13.
Koziol
,
M. F.
,
K.
Fischer
, and
S.
Seiffert
, “
Structural and gelation characteristics of metallo-supramolecular polymer model-network hydrogels probed by static and dynamic light scattering
,”
Macromolecules
54
,
4375
4386
(
2021
).
14.
Kestin
,
J.
,
M.
Sokolov
, and
W. A.
Wakeham
, “
Viscosity of liquid water in the range − 8 °C to 150 °C
,”
J. Phys. Chem. Ref. Data
7
,
941
948
(
1978
).
15.
Vermonden
,
T.
,
M. J.
Van Steenbergen
,
N. A. M.
Besseling
,
A. T. M.
Marcelis
,
W. E.
Hennink
,
E. J. R.
Sudho
, and
M. A.
Cohen Stuart
, “
Linear rheology of water-soluble reversible neodymium (III) coordination polymers
,”
J. Am. Chem. Soc.
126
,
15802
15808
(
2004
).
16.
Van De Manakker
,
F.
,
T.
Vermonden
,
N.
el Morabit
,
C. F.
Van Nostrum
, and
W. E.
Hennink
, “
Rheological behavior of self-assembling PEG-cyclodextrin/PEG-cholesterol hydrogels
,”
Langmuir
24
,
12559
12567
(
2008
).
17.
Karvinen
,
J.
,
T. O.
Ihalainen
,
M. T.
Calejo
,
I.
Jönkkäri
, and
M.
Kellomäki
, “
Characterization of the microstructure of hydrazone crosslinked polysaccharide-based hydrogels through rheological and diffusion studies
,”
Mater. Sci. Eng. C
94
,
1056
1066
(
2019
).
18.
Risica
,
D.
,
A.
Barbetta
,
L.
Vischetti
,
C.
Cametti
, and
M.
Dentini
, “
Rheological properties of guar and its methyl, hydroxypropyl and hydroxypropyl-methyl derivatives in semidilute and concentrated aqueous solutions
,”
Polymer
51
,
1972
1982
(
2010
).
19.
Jangizehi
A.
,
Ahmadi
M.
, and
Seiffert
S.
, “
Emergence, evidence, and effect of junction clustering in supramolecular polymer materials
,”
Mater. Adv.
2
,
1425
1453
, (
2021
).
20.
Ahmadi
,
M.
, and
S.
Seiffert
, “
Thermodynamic control over energy dissipation modes in dual-network hydrogels based on metal-ligand coordination
,”
Soft Matter
16
,
2332
2341
(
2020
).
21.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000388 for complete characterization of the precursor polymers.

Supplementary Material

You do not currently have access to this content.