Numerous mechanically strong and tough soft materials comprising of polymer networks have been developed over the last two decades, motivated by new high-tech applications in engineering and bio-related fields. These materials are characterized by their dynamic complexities and large deformation behaviors. In this Review, we focus on how chain dynamics affects the large deformation and fracture behaviors of soft materials. To favor readers without a rheology background, first we review the linear rheology behaviors of several simple networks. We show that, by playing with the physical entanglement, chemical cross-linking, and physical association of the building polymers, a very rich panel of dynamic responses can be obtained. Then, we show examples of how chain dynamics affects the deformation and fracture behaviors of dually cross-linked hydrogels having chemical cross-linkers and physical bonds. We also provide examples on the unique deformation behavior of physical double-network gels made from triblock polymers. Thereafter, examples of the influence of chain dynamics on the crack initiation and growth behaviors are presented. We show that even for chemically cross-linked double-network hydrogels that exhibit elastic behaviors in a common deformation window, the chain dynamics influences the damage zone size at the crack tip. Finally, we conclude this Review by proposing several directions for future research.

1.
Gong
,
J. P.
,
Y.
Katsuyama
,
T.
Kurokawa
, and
Y.
Osada
, “
Double-network hydrogels with extremely high mechanical strength
,”
Adv. Mater.
15
,
1155
1158
(
2003
).
2.
Okumura
,
Y.
, and
K.
Ito
, “
The polyrotaxane gel: A topological gel by figure-of-eight cross-links
,”
Adv. Mater.
13
,
485
487
(
2001
).
3.
Montarnal
,
D.
,
M.
Capelot
,
F.
Tournilhac
, and
L.
Leibler
, “
Silica-like malleable materials from permanent organic networks
,”
Science
334
,
965
968
(
2011
).
4.
Wang
,
P.
,
G.
Deng
,
L.
Zhou
,
Z.
Li
, and
Y.
Chen
, “
Ultrastretchable, self-healable hydrogels based on dynamic covalent bonding and triblock copolymer micellization
,”
ACS Macro Lett.
6
,
881
886
(
2017
).
5.
Yang
,
H.
,
S.
Ghiassinejad
,
E.
Van Ruymbeke
, and
C. A.
Fustin
, “
Tunable interpenetrating polymer network hydrogels based on dynamic covalent bonds and metal-ligand bonds
,”
Macromolecules
53
,
6956
6967
(
2020
).
6.
Kim
,
J.
,
G.
Zhang
,
M.
Shi
, and
Z.
Suo
, “
Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links
,”
Science
374
,
212
216
(
2021
).
7.
Wei
,
Z.
,
J. H.
Yang
,
J.
Zhou
,
F.
Xu
,
M.
Zrínyi
,
P. H.
Dussault
,
Y.
Osada
, and
Y. M.
Chen
, “
Self-healing gels based on constitutional dynamic chemistry and their potential applications
,”
Chem. Soc. Rev.
43
,
8114
8131
(
2014
).
8.
Ghiassinejad
,
S.
,
K.
Mortensen
,
M.
Rostamitabar
,
J.
Malineni
,
C. A.
Fustin
, and
E.
Van Ruymbeke
, “
Dynamics and structure of metallo-supramolecular polymers based on short telechelic precursors
,”
Macromolecules
54
,
6400
6416
(
2021
).
9.
Hammer
,
L.
,
N. J.
Van Zee
, and
R.
Nicolaÿ
, “
Dually crosslinked polymer networks incorporating dynamic covalent bonds
,”
Polymers
13
,
396
(
2021
).
10.
Wang
,
W.
,
J.
Madsen
,
N.
Genina
,
O.
Hassager
,
A. L.
Skov
, and
Q.
Huang
, “
Toward a design for flowable and extensible ionomers: An example of diamine-neutralized entangled poly(styrene-co-4-vinylbenzoic acid) ionomer melts
,”
Macromolecules
54
,
2306
2315
(
2021
).
11.
Borger
,
A.
,
W.
Wang
,
T. C.
O’Connor
,
T.
Ge
,
G. S.
Grest
,
G. V.
Jensen
,
J.
Ahn
,
T.
Chang
,
O.
Hassager
,
K.
Mortensen
,
D.
Vlassopoulos
, and
Q.
Huang
, “
Threading-unthreading transition of linear-ring polymer blends in extensional flow
,”
ACS Macro Lett.
9
,
1452
1457
(
2020
).
12.
Scetta
,
G.
,
J.
Ju
,
N.
Selles
,
P.
Heuillet
,
M.
Ciccotti
, and
C.
Creton
, “
Strain induced strengthening of soft thermoplastic polyurethanes under cyclic deformation
,”
J. Polym. Sci.
59
,
685
696
(
2021
).
13.
Haraguchi
,
K.
, and
T.
Takehisa
, “
Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties
,”
Adv. Mater.
14
,
1120
1124
(
2002
).
14.
Falco
,
G.
,
P.
Griffiths
,
C.
Coutouly
,
C. A.
Fustin
, and
G. P.
Baeza
, “
Supramolecular superparamagnetic nanocomposites based on a magnetite-filled unentangled terpyridine-functionalized polymer
,”
Macromolecules
53
,
5361
5370
(
2020
).
15.
Zhuge
,
F.
,
J.
Brassinne
,
C. A.
Fustin
,
E.
Van Ruymbeke
, and
J. F.
Gohy
, “
Synthesis and rheology of bulk metallo-supramolecular polymers from telechelic entangled precursors
,”
Macromolecules
50
,
5165
5175
(
2017
).
16.
Mayumi
,
K.
,
J.
Guo
,
T.
Narita
,
C. Y.
Hui
, and
C.
Creton
, “
Fracture of dual crosslink gels with permanent and transient crosslinks
,”
Extreme Mech. Lett.
6
,
52
59
(
2016
).
17.
Haque
,
M. A.
,
T.
Kurokawa
, and
J. P.
Gong
, “
Super tough double network hydrogels and their application as biomaterials
,”
Polymer
53
,
1805
1822
(
2012
).
18.
Akagi
,
Y.
,
J. P.
Gong
,
U.
Chung
, and
T.
Sakai
, “
Transition between phantom and affine network model observed in polymer gels with controlled network structure
,”
Macromolecules
46
,
1035
1040
(
2013
).
19.
Zhao
,
X.
,
X.
Chen
,
H.
Yuk
,
S.
Lin
,
X.
Liu
, and
G.
Parada
, “
Soft materials by design: Unconventional polymer networks give extreme properties
,”
Chem. Rev.
121
,
4309
4372
(
2021
).
20.
Zheng
,
S. Y.
,
C.
Liu
,
L.
Jiang
,
J.
Lin
,
J.
Qian
,
K.
Mayumi
,
Z. L.
Wu
,
K.
Ito
, and
Q.
Zheng
, “
Slide-ring cross-links mediated tough metallosupramolecular hydrogels with superior self-recoverability
,”
Macromolecules
52
,
6748
6755
(
2019
).
21.
Ahmadi
,
M.
, and
S.
Seiffert
, “
Coordination geometry preference regulates the structure and dynamics of metallo-supramolecular polymer networks
,”
Macromolecules
54
,
1388
1400
(
2021
).
22.
Liu
,
C.
,
T.
Fujiyabu
,
N.
Morimoto
,
L.
Jiang
,
H.
Yokoyama
,
T.
Sakai
,
K.
Mayumi
, and
K.
Ito
, “
Tough hydrogels with rapid self-reinforcement
,”
Science
1081
,
1078
1081
(
2021
).
23.
Koziol
,
M. F.
,
K.
Fischer
, and
S.
Seiffert
, “
Structural and gelation characteristics of metallo-supramolecular polymer model-network hydrogels probed by static and dynamic light scattering
,”
Macromolecules
54
,
4375
4386
(
2021
).
24.
Wan
,
H.
,
J.
Shen
,
N.
Gao
,
J.
Liu
,
Y.
Gao
, and
L.
Zhang
, “
Tailoring the mechanical properties by molecular integration of flexible and stiff polymer networks
,”
Soft Matter
14
,
2379
2390
(
2018
).
25.
Umar
,
M.
,
K.
Min
, and
S.
Kim
, “
Advances in hydrogel photonics and their applications
,”
APL Photonics
4
,
120901
(
2019
).
26.
Kamath
,
K. R.
, and
K.
Park
, “
Biodegradable hydrogels in drug delivery
,”
Adv. Drug Deliv. Rev.
11
,
59
84
(
1993
).
27.
Gong
,
J. P.
, and
Y.
Osada
, “
Soft and wet materials from hydrogels to biotissues
,”
Adv. Polym. Sci.
236
,
203
246
(
2010
).
28.
Tavakoli
,
J.
, and
Y.
Tang
, “
Hydrogel based sensors for biomedical applications: An updated review
,”
Polymers
9
,
364
(
2017
).
29.
Kopeček
,
J.
, “
Hydrogel biomaterials: A smart future?
,”
Biomaterials
28
,
5185
5192
(
2007
).
30.
Sakai
,
T.
,
T.
Matsunaga
,
Y.
Yamamoto
,
C.
Ito
,
R.
Yoshida
,
S.
Suzuki
,
N.
Sasaki
,
M.
Shibayama
, and
U.
Chung
, “
Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers
,”
Macromolecules
41
,
5379
5384
(
2008
).
31.
Matsunaga
,
T.
,
T.
Sakai
,
Y.
Akagi
,
U.
Chung
, and
M.
Shibayama
, “
SANS and SLS studies on tetra-arm PEG gels in as-prepared and swollen states
,”
Macromolecules
42
,
6245
6252
(
2009
).
32.
Sun
,
J.-Y.
,
X.
Zhao
,
W. R. K.
Illeperuma
,
O.
Chaudhuri
,
K. H.
Oh
,
D. J.
Mooney
,
J. J.
Vlassak
, and
Z.
Suo
, “
Highly stretchable and tough hydrogels
,”
Nature
489
,
133
136
(
2012
).
33.
Zhao
,
X.
, “
Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks
,”
Soft Matter
10
,
672
687
(
2014
).
34.
Rubinstein
,
M.
, and
A. N.
Semenov
, “
Dynamics of entangled solutions of associating polymers
,”
Macromolecules
34
,
1058
1068
(
2001
).
35.
Zhang
,
Z.
,
Q.
Chen
, and
R. H.
Colby
, “
Dynamics of associative polymers
,”
Soft Matter
14
,
2961
2977
(
2018
).
36.
Van Ruymbeke
,
E.
, “
Preface: Special issue on associating polymers
,”
J. Rheol.
61
,
1099
1102
(
2017
).
37.
Ito
,
K.
, “
Novel entropic elasticity of polymeric materials: Why is slide-ring gel so soft
,”
Polym. J.
44
,
38
41
(
2012
).
38.
Liang
,
S.
,
Q. M.
Yu
,
H.
Yin
,
Z. L.
Wu
,
T.
Kurokawa
, and
J. P.
Gong
, “
Ultrathin tough double network hydrogels showing adjustable muscle-like isometric force generation triggered by solvent
,”
Chem. Commun.
2009
,
7518
7520
(
2009
).
39.
Nakajima
,
T.
,
H.
Furukawa
,
Y.
Tanaka
,
T.
Kurokawa
,
Y.
Osada
, and
J. P.
Gong
, “
True chemical structure of double network hydrogels
,”
Macromolecules
42
,
2184
2189
(
2009
).
40.
Gong
,
J. P.
, “
Why are double network hydrogels so tough?
,”
Soft Matter
6
,
2583
2590
(
2010
).
41.
Hu
,
J.
,
K.
Hiwatashi
,
T.
Kurokawa
,
S. M.
Liang
,
Z. L.
Wu
, and
J. P.
Gong
, “
Microgel-reinforced hydrogel films with high mechanical strength and their visible mesoscale fracture structure
,”
Macromolecules
44
,
7775
7781
(
2011
).
42.
Yin
,
H.
,
T.
Akasaki
,
T.
Lin Sun
,
T.
Nakajima
,
T.
Kurokawa
,
T.
Nonoyama
,
T.
Taira
,
Y.
Saruwatari
, and
J.
Ping Gong
, “
Double network hydrogels from polyzwitterions: High mechanical strength and excellent anti-biofouling properties
,”
J. Mater. Chem. B
1
,
3685
3693
(
2013
).
43.
Gong
,
J. P.
, “
Materials both tough and soft
,”
Science
344
,
161
162
(
2014
).
44.
Matsuda
,
T.
,
R.
Kawakami
,
R.
Namba
,
T.
Nakajima
, and
J. P.
Gong
, “
Mechanoresponsive self-growing hydrogels inspired by muscle training
,”
Science
363
,
504
508
(
2019
).
45.
Wu
,
Z. L.
,
D.
Sawada
,
T.
Kurokawa
,
A.
Kakugo
,
W.
Yang
,
H.
Furukawa
, and
J. P.
Gong
, “
Strain-induced molecular reorientation and birefringence reversion of a robust, anisotropic double-network hydrogel
,”
Macromolecules
44
,
3542
3547
(
2011
).
46.
Tanaka
,
Y.
,
R.
Kuwabara
,
Y.-H.
Na
,
T.
Kurokawa
,
J. P.
Gong
, and
Y.
Osada
, “
Determination of fracture energy of high strength double network hydrogels
,”
J. Phys. Chem. B
109
,
11559
11562
(
2005
).
47.
Webber
,
R. E.
,
C.
Creton
,
H. R.
Brown
, and
J. P.
Gong
, “
Large strain hysteresis and Mullins effect of tough double-network hydrogels
,”
Macromolecules
40
,
2919
2927
(
2007
).
48.
Brown
,
H. R.
, “
A model of the fracture of double network gels
,”
Macromolecules
40
,
3815
3818
(
2007
).
49.
Matsuda
,
T.
,
T.
Nakajima
,
Y.
Fukuda
,
W.
Hong
,
T.
Sakai
,
T.
Kurokawa
,
U.
Il Chung
, and
J. P.
Gong
, “
Yielding criteria of double network hydrogels
,”
Macromolecules
49
,
1865
1872
(
2016
).
50.
Hu
,
X.
,
J.
Zhou
,
W. F. M.
Daniel
,
M.
Vatankhah-Varnoosfaderani
,
A. V.
Dobrynin
, and
S. S.
Sheiko
, “
Dynamics of dual networks: Strain rate and temperature effects in hydrogels with reversible H-bonds
,”
Macromolecules
50
,
652
659
(
2017
).
51.
Liu
,
M.
,
J.
Guo
,
C.-Y.
Hui
,
C.
Creton
,
T.
Narita
, and
A.
Zehnder
, “
Time-temperature equivalence in a PVA dual cross-link self-healing hydrogel
,”
J. Rheol.
62
,
991
1000
(
2018
).
52.
Taylor
,
D. L.
, and
M.
In het Panhuis
, “
Self-healing hydrogels
,”
Adv. Mater.
28
,
9060
9093
(
2016
).
53.
Zhang
,
H. J.
,
T. L.
Sun
,
A. K.
Zhang
,
Y.
Ikura
,
T.
Nakajima
,
T.
Nonoyama
,
T.
Kurokawa
,
O.
Ito
,
H.
Ishitobi
, and
J. P.
Gong
, “
Tough physical double-network hydrogels based on amphiphilic triblock copolymers
,”
Adv. Mater.
28
,
4884
4890
(
2016
).
54.
Luo
,
F.
,
T. L.
Sun
,
T.
Nakajima
,
T.
Kurokawa
,
X.
Li
,
H.
Guo
,
Y.
Huang
,
H.
Zhang
, and
J. P.
Gong
, “
Tough polyion-complex hydrogels from soft to stiff controlled by monomer structure
,”
Polymer
116
,
487
497
(
2017
).
55.
Luo
,
F.
,
T. L.
Sun
,
T.
Nakajima
,
T.
Kurokawa
,
A.
Bin Ihsan
,
X.
Li
,
H.
Guo
, and
J. P.
Gong
, “
Free reprocessability of tough and self-healing hydrogels based on polyion complex
,”
ACS Macro Lett.
4
,
961
964
(
2015
).
56.
Li
,
X.
,
Q.
Yang
,
Y.
Zhao
,
S.
Long
, and
J.
Zheng
, “
Dual physically crosslinked double network hydrogels with high toughness and self-healing properties
,”
Soft Matter
13
,
911
920
(
2017
).
57.
Hu
,
X.
,
M.
Vatankhah-Varnoosfaderani
,
J.
Zhou
,
Q.
Li
, and
S. S.
Sheiko
, “
Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels
,”
Adv. Mater.
27
,
6899
6905
(
2015
).
58.
Guo
,
M.
,
L. M.
Pitet
,
H. M.
Wyss
,
M.
Vos
,
P. Y. W.
Dankers
, and
E. W.
Meijer
, “
Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions
,”
J. Am. Chem. Soc.
136
,
6969
6977
(
2014
).
59.
Wang
,
Y.
,
J.
He
,
S.
Aktas
,
S. A.
Sukhishvili
, and
D. M.
Kalyon
, “
Rheological behavior and self-healing of hydrogen-bonded complexes of a triblock Pluronic® copolymer with a weak polyacid
,”
J. Rheol.
61
,
1103
1119
(
2017
).
60.
Zhang
,
X. N.
,
Y. J.
Wang
,
S.
Sun
,
L.
Hou
,
P.
Wu
,
Z. L.
Wu
, and
Q.
Zheng
, “
A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction
,”
Macromolecules
51
,
8136
8146
(
2018
).
61.
Ma
,
M.
,
Y.
Kuang
,
Y.
Gao
,
Y.
Zhang
,
P.
Gao
, and
B.
Xu
, “
Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels
,”
J. Am. Chem. Soc.
132
,
2719
2728
(
2010
).
62.
Singh
,
V.
,
K.
Snigdha
,
C.
Singh
,
N.
Sinha
, and
A. K.
Thakur
, “
Understanding the self-assembly of Fmoc-phenylalanine to hydrogel formation
,”
Soft Matter
11
,
5353
5364
(
2015
).
63.
Yan
,
X.
,
P.
Zhu
, and
J.
Li
, “
Self-assembly and application of diphenylalanine-based nanostructures
,”
Chem. Soc. Rev.
39
,
1877
1890
(
2010
).
64.
Tuncaboylu
,
D. C.
,
M.
Sari
,
W.
Oppermann
, and
O.
Okay
, “
Tough and self-healing hydrogels formed via hydrophobic interactions
,”
Macromolecules
44
,
4997
5005
(
2011
).
65.
Jiang
,
H.
,
L.
Duan
,
X.
Ren
, and
G.
Gao
, “
Hydrophobic association hydrogels with excellent mechanical and self-healing properties
,”
Eur. Polym. J.
112
,
660
669
(
2019
).
66.
Jeong
,
B.
,
S. W.
Kim
, and
Y. H.
Bae
, “
Thermosensitive sol–gel reversible hydrogels
,”
Adv. Drug Deliv. Rev.
64
,
154
162
(
2012
).
67.
Mihajlovic
,
M.
,
M.
Staropoli
,
M.-S.
Appavou
,
H. M.
Wyss
,
W.
Pyckhout-Hintzen
, and
R. P.
Sijbesma
, “
Tough supramolecular hydrogel based on strong hydrophobic interactions in a multiblock segmented copolymer
,”
Macromolecules
50
,
3333
3346
(
2017
).
68.
Guo
,
H.
,
T.
Nakajima
,
D.
Hourdet
,
A.
Marcellan
,
C.
Creton
,
W.
Hong
,
T.
Kurokawa
, and
J. P.
Gong
, “
Hydrophobic hydrogels with fruit-like structure and functions
,”
Adv. Mater.
31
,
1900702
(
2019
).
69.
Guo
,
H.
,
N.
Sanson
,
D.
Hourdet
, and
A.
Marcellan
, “
Thermoresponsive toughening with crack bifurcation in phase-separated hydrogels under isochoric conditions
,”
Adv. Mater.
28
,
5857
5864
(
2016
).
70.
Takeoka
,
Y.
,
A. N.
Berker
,
R.
Du
,
T.
Enoki
,
A.
Grosberg
,
M.
Kardar
,
T.
Oya
,
K.
Tanaka
,
G.
Wang
,
X.
Yu
, and
T.
Tanaka
, “
First order phase transition and evidence for frustrations in polyampholytic gels
,”
Phys. Rev. Lett.
82
,
4863
4865
(
1999
).
71.
English
,
A. E.
,
S.
Mafé
,
J. A.
Manzanares
,
X.
Yu
,
A. Y.
Grosberg
, and
T.
Tanaka
, “
Equilibrium swelling properties of polyampholytic hydrogels
,”
J. Chem. Phys.
104
,
8713
8720
(
1996
).
72.
Sun
,
T. L.
, and
K.
Cui
, “
Tough and self-healing hydrogels from polyampholytes
,”
Adv. Polym. Sci.
285
,
295
317
(
2020
).
73.
Li
,
X.
,
L.
Liu
,
X.
Wang
,
Y. S.
Ok
,
J. A. W.
Elliott
,
S. X.
Chang
, and
H. J.
Chung
, “
Flexible and self-healing aqueous supercapacitors for low temperature applications: Polyampholyte gel electrolytes with biochar electrodes
,”
Sci. Rep.
7
,
1
11
(
2017
).
74.
Hou
,
S.
, and
P. X.
Ma
, “
Stimuli-responsive supramolecular hydrogels with high extensibility and fast self-healing via precoordinated mussel-inspired chemistry
,”
Chem. Mater.
27
,
7627
7635
(
2015
).
75.
Zhang
,
K.
,
Q.
Feng
,
J.
Xu
,
X.
Xu
,
F.
Tian
,
K. W. K.
Yeung
, and
L.
Bian
, “
Self-assembled injectable nanocomposite hydrogels stabilized by bisphosphonate-magnesium (Mg2+) coordination regulates the differentiation of encapsulated stem cells via dual crosslinking
,”
Adv. Funct. Mater.
27
,
1701642
(
2017
).
76.
Holten-Andersen
,
N.
,
M. J.
Harrington
,
H.
Birkedal
,
B. P.
Lee
,
P. B.
Messersmith
,
K. Y. C.
Lee
, and
J. H.
Waite
, “
pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
2651
2655
(
2011
).
77.
Lee
,
J.
,
K.
Chang
,
S.
Kim
,
V.
Gite
,
H.
Chung
, and
D.
Sohn
, “
Phase controllable hyaluronic acid hydrogel with iron(III) ion-catechol induced dual cross-linking by utilizing the gap of gelation kinetics
,”
Macromolecules
49
,
7450
7459
(
2016
).
78.
Takata
,
T.
, and
D.
Aoki
, “
Topology-transformable polymers: Linear–branched polymer structural transformation via the mechanical linking of polymer chains
,”
Polym. J.
50
,
127
147
(
2018
).
79.
Chen
,
Q.
,
Z.
Zhang
, and
R. H.
Colby
, “
Viscoelasticity of entangled random polystyrene ionomers
,”
J. Rheol.
60
,
1031
1040
(
2016
).
80.
Lewis
,
C. L.
,
K.
Stewart
, and
M.
Anthamatten
, “
The influence of hydrogen bonding side-groups on viscoelastic behavior of linear and network polymers
,”
Macromolecules
47
,
729
740
(
2014
).
81.
Ahmadi
,
M.
,
A.
Jangizehi
,
E.
Van Ruymbeke
, and
S.
Seiffert
, “
Deconvolution of the effects of binary associations and collective assemblies on the rheological properties of entangled side-chain supramolecular polymer networks
,”
Macromolecules
52
,
5255
5267
(
2019
).
82.
Ianniruberto
,
G.
,
A.
Brasiello
, and
G.
Marrucci
, “
Modeling unentangled polystyrene melts in fast elongational flows
,”
Macromolecules
52
,
4610
4616
(
2019
).
83.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
).
84.
Leibler
,
L.
,
M.
Rubinstein
, and
R. H.
Colby
, “
Dynamics of reversible networks
,”
Macromolecules
24
,
4701
4707
(
1991
).
85.
Chen
,
Q.
,
G. J.
Tudryn
, and
R. H.
Colby
, “
Ionomer dynamics and the sticky Rouse model
,”
J. Rheol.
57
,
1441
1462
(
2013
).
86.
Baxandall
,
L. G.
, “
Dynamics of reversibly crosslinked chains
,”
Macromolecules
22
,
1982
1988
(
1989
).
87.
Biswas
,
C. S.
,
Y.
Wu
,
Q.
Wang
,
L.
Du
,
K.
Mitra
,
B.
Ray
,
Z.-C.
Yan
,
B.
Du
, and
F. J.
Stadler
, “
Effect of tacticity and molecular weight on the rheological properties of poly(N-isopropylacrylamide) gels in benzyl alcohol
,”
J. Rheol.
61
,
1345
1357
(
2017
).
88.
Watanabe
,
H.
,
Y.
Matsumiya
, and
Y.
Kwon
, “
Dynamics of Rouse chains undergoing head-to-head association and dissociation: Difference between dielectric and viscoelastic relaxation
,”
J. Rheol.
61
,
1151
1170
(
2017
).
89.
Louhichi
,
A.
,
A. R.
Jacob
,
L.
Bouteiller
, and
D.
Vlassopoulos
, “
Humidity affects the viscoelastic properties of supramolecular living polymers
,”
J. Rheol.
61
,
1173
1182
(
2017
).
90.
Shivokhin
,
M. E.
,
T.
Narita
,
L.
Talini
,
A.
Habicht
,
S.
Seiffert
,
T.
Indei
, and
J. D.
Schieber
, “
Interplay of entanglement and association effects on the dynamics of semidilute solutions of multisticker polymer chains
,”
J. Rheol.
61
,
1231
1241
(
2017
).
91.
Staropoli
,
M.
,
A.
Raba
,
C. H.
Hövelmann
,
M.-S.
Appavou
,
J.
Allgaier
,
M.
Krutyeva
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
, and
D.
Richter
, “
Melt dynamics of supramolecular comb polymers: Viscoelastic and dielectric response
,”
J. Rheol.
61
,
1185
1196
(
2017
).
92.
Shabbir
,
A.
,
Q.
Huang
,
G. P.
Baeza
,
D.
Vlassopoulos
,
Q.
Chen
,
R. H.
Colby
,
N. J.
Alvarez
, and
O.
Hassager
, “
Nonlinear shear and uniaxial extensional rheology of polyether-ester-sulfonate copolymer ionomer melts
,”
J. Rheol.
61
,
1279
1289
(
2017
).
93.
Zhao
,
J.
,
K.
Mayumi
,
C.
Creton
, and
T.
Narita
, “
Rheological properties of tough hydrogels based on an associating polymer with permanent and transient crosslinks: Effects of crosslinking density
,”
J. Rheol.
61
,
1371
1383
(
2017
).
94.
Gold
,
B. J.
,
C. H.
Hövelmann
,
N.
Lühmann
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
, and
D.
Richter
, “
The microscopic origin of the rheology in supramolecular entangled polymer networks
,”
J. Rheol.
61
,
1211
1226
(
2017
).
95.
Pratchayanan
,
D.
,
J.-C.
Yang
,
C. L.
Lewis
,
N.
Thoppey
, and
M.
Anthamatten
, “
Thermomechanical insight into the reconfiguration of Diels–Alder networks
,”
J. Rheol.
61
,
1359
1367
(
2017
).
96.
Aime
,
S.
,
N. D.
Eisenmenger
, and
T. A. P.
Engels
, “
A model for failure in thermoplastic elastomers based on Eyring kinetics and network connectivity
,”
J. Rheol.
61
,
1329
1342
(
2017
).
97.
Park
,
G. W.
, and
G.
Ianniruberto
, “
A new stochastic simulation for the rheology of telechelic associating polymers
,”
J. Rheol.
61
,
1293
1305
(
2017
).
98.
Wagner
,
C. E.
, and
G. H.
McKinley
, “
Age-dependent capillary thinning dynamics of physically-associated salivary mucin networks
,”
J. Rheol.
61
,
1309
1326
(
2017
).
99.
Chile
,
L.-E.
,
P.
Mehrkhodavandi
, and
S. G.
Hatzikiriakos
, “
Aromatic interactions in aryl-capped polylactides: A thermorheological investigation
,”
J. Rheol.
61
,
1137
1148
(
2017
).
100.
Zhang
,
Z.
,
C.
Huang
,
R. A.
Weiss
, and
Q.
Chen
, “
Association energy in strongly associative polymers
,”
J. Rheol.
61
,
1199
1207
(
2017
).
101.
Arora
,
S.
,
A.
Shabbir
,
O.
Hassager
,
C.
Ligoure
, and
L.
Ramos
, “
Brittle fracture of polymer transient networks
,”
J. Rheol.
61
,
1267
1275
(
2017
).
102.
Zhuge
,
F.
,
L. G. D.
Hawke
,
C.-A.
Fustin
,
J.-F.
Gohy
, and
E.
van Ruymbeke
, “
Decoding the linear viscoelastic properties of model telechelic metallo-supramolecular polymers
,”
J. Rheol.
61
,
1245
1262
(
2017
).
103.
Brassinne
,
J.
,
A.
Cadix
,
J.
Wilson
, and
E.
van Ruymbeke
, “
Dissociating sticker dynamics from chain relaxation in supramolecular polymer networks—The importance of free partner!
,”
J. Rheol.
61
,
1123
1134
(
2017
).
104.
Ahmadi
,
M.
, and
S.
Seiffert
, “
Dynamic model metallo-supramolecular dual-network hydrogels with independently tunable network crosslinks
,”
J. Polym. Sci.
58
,
330
342
(
2020
).
105.
Krajina
,
B. A.
,
C.
Tropini
,
A.
Zhu
,
P.
Digiacomo
,
J. L.
Sonnenburg
,
S. C.
Heilshorn
, and
A. J.
Spakowitz
, “
Dynamic light scattering microrheology reveals multiscale viscoelasticity of polymer gels and precious biological materials
,”
ACS Cent. Sci.
3
,
1294
1303
(
2017
).
106.
Kean
,
Z. S.
,
J. L.
Hawk
,
S.
Lin
,
X.
Zhao
,
R. P.
Sijbesma
, and
S. L.
Craig
, “
Increasing the maximum achievable strain of a covalent polymer gel through the addition of mechanically invisible cross-links
,”
Adv. Mater.
26
,
6013
6018
(
2014
).
107.
Zhao
,
J.
,
T.
Narita
, and
C.
Creton
, “
Dual crosslink hydrogels with metal-ligand coordination bonds: Tunable dynamics and mechanics under large deformation
,”
Adv. Polym. Sci.
285
,
1
20
(
2020
).
108.
Tito
,
N. B.
,
C.
Creton
,
C.
Storm
, and
W. G.
Ellenbroek
, “
Harnessing entropy to enhance toughness in reversibly crosslinked polymer networks
,”
Soft Matter
15
,
2190
2203
(
2019
).
109.
Narita
,
T.
,
K.
Mayumi
,
G.
Ducouret
, and
P.
Hébraud
, “
Viscoelastic properties of poly(vinyl alcohol) hydrogels having permanent and transient cross-links studied by microrheology, classical rheometry, and dynamic light scattering
,”
Macromolecules
46
,
4174
4183
(
2013
).
110.
Mayumi
,
K.
,
A.
Marcellan
,
G.
Ducouret
,
C.
Creton
, and
T.
Narita
, “
Stress-strain relationship of highly stretchable dual cross-link gels: Separability of strain and time effect
,”
ACS Macro Lett.
2
,
1065
1068
(
2013
).
111.
Sun
,
T. L.
,
T.
Kurokawa
,
S.
Kuroda
,
A.
Bin Ihsan
,
T.
Akasaki
,
K.
Sato
,
M. A.
Haque
,
T.
Nakajima
, and
J. P.
Gong
, “
Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity
,”
Nat. Mater.
12
,
932
937
(
2013
).
112.
Bin Ihsan
,
A.
,
T. L.
Sun
,
S.
Kuroda
,
M. A.
Haque
,
T.
Kurokawa
,
T.
Nakajima
, and
J. P.
Gong
, “
A phase diagram of neutral polyampholyte-from solution to tough hydrogel
,”
J. Mater. Chem. B
1
,
4555
4562
(
2013
).
113.
Sun
,
T. L.
,
F.
Luo
,
T.
Kurokawa
,
S. N.
Karobi
,
T.
Nakajima
, and
J. P.
Gong
, “
Molecular structure of self-healing polyampholyte hydrogels analyzed from tensile behaviors
,”
Soft Matter
11
,
9355
9366
(
2015
).
114.
Sun
,
T. L.
,
F.
Luo
,
W.
Hong
,
K.
Cui
,
Y.
Huang
,
H. J.
Zhang
,
D. R.
King
,
T.
Kurokawa
,
T.
Nakajima
, and
J. P.
Gong
, “
Bulk energy dissipation mechanism for the fracture of tough and self-healing hydrogels
,”
Macromolecules
50
,
2923
2931
(
2017
).
115.
Sun
,
T. L.
,
K.
Cui
, and
J. P.
Gong
, “
Tough, self-recovery and self-healing polyampholyte hydrogels
,”
Polym. Sci. Ser. C
59
,
11
17
(
2017
).
116.
Cui
,
K.
,
T. L.
Sun
,
T.
Kurokawa
,
T.
Nakajima
,
T.
Nonoyama
,
L.
Chen
, and
J. P.
Gong
, “
Stretching-induced ion complexation in physical polyampholyte hydrogels
,”
Soft Matter
12
,
8833
8840
(
2016
).
117.
Cui
,
K.
,
T. L.
Sun
,
X.
Liang
,
K.
Nakajima
,
Y. N.
Ye
,
L.
Chen
,
T.
Kurokawa
, and
J. P.
Gong
, “
Multiscale energy dissipation mechanism in tough and self-healing hydrogels
,”
Phys. Rev. Lett.
121
,
185501
(
2018
).
118.
Cui
,
K.
,
Y. N.
Ye
,
T. L.
Sun
,
L.
Chen
,
X.
Li
,
T.
Kurokawa
,
T.
Nakajima
,
T.
Nonoyama
, and
J. P.
Gong
, “
Effect of structure heterogeneity on mechanical performance of physical polyampholytes hydrogels
,”
Macromolecules
52
,
7369
7378
(
2019
).
119.
Cui
,
K.
,
Y. N.
Ye
,
C.
Yu
,
X.
Li
,
T.
Kurokawa
, and
J. P.
Gong
, “
Stress relaxation and underlying structure evolution in tough and self-healing hydrogels
,”
ACS Macro Lett.
9
,
1582
1589
(
2020
).
120.
Li
,
X.
,
K.
Cui
,
T. L.
Sun
,
L.
Meng
,
C.
Yu
,
L.
Li
,
C.
Creton
,
T.
Kurokawa
, and
J. P.
Gong
, “
Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
7606
7612
(
2020
).
121.
Cui
,
K.
,
Y. N.
Ye
,
T. L.
Sun
,
C.
Yu
,
X.
Li
,
T.
Kurokawa
, and
J. P.
Gong
, “
Phase separation behavior in tough and self-healing polyampholyte hydrogels
,”
Macromolecules
53
,
5116
5126
(
2020
).
122.
Yu
,
C.
,
H.
Guo
,
K.
Cui
,
X.
Li
,
Y. N.
Ye
,
T.
Kurokawa
, and
J. P.
Gong
, “
Hydrogels as dynamic memory with forgetting ability
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
18962
18968
(
2020
).
123.
Li
,
X.
,
K.
Cui
,
T.
Kurokawa
,
Y. N.
Ye
,
T. L.
Sun
,
C.
Yu
,
C.
Creton
, and
J. P.
Gong
, “
Effect of mesoscale phase contrast on fatigue-delaying behavior of self-healing hydrogels
,”
Sci. Adv.
7
,
eabe8210
(
2021
).
124.
Cui
,
K.
, and
J. P.
Gong
, “
Aggregated structures and their functionalities in hydrogels
,”
Aggregate
2
,
e33
(
2021
).
125.
Yu
,
C.
,
K.
Cui
,
H.
Guo
,
Y. N.
Ye
,
X.
Li
, and
J. P.
Gong
, “
Structure frustration enables thermal history-dependent responsive behavior in self-healing hydrogels
,”
Macromolecules
54
,
9927
9936
(
2021
).
126.
Karobi
,
S. N.
,
T. L.
Sun
,
T.
Kurokawa
,
F.
Luo
,
T.
Nakajima
,
T.
Nonoyama
, and
J. P.
Gong
, “
Creep behavior and delayed fracture of tough polyampholyte hydrogels by tensile test
,”
Macromolecules
49
,
5630
5636
(
2016
).
127.
Long
,
R.
,
K.
Mayumi
,
C.
Creton
,
T.
Narita
, and
C. Y.
Hui
, “
Time dependent behavior of a dual cross-link self-healing gel: Theory and experiments
,”
Macromolecules
47
,
7243
7250
(
2014
).
128.
Guo
,
J.
,
R.
Long
,
K.
Mayumi
, and
C. Y.
Hui
, “
Mechanics of a dual cross-link gel with dynamic bonds: Steady state kinetics and large deformation effects
,”
Macromolecules
49
,
3497
3507
(
2016
).
129.
Long
,
R.
,
K.
Mayumi
,
C.
Creton
,
T.
Narita
, and
C.-Y.
Hui
, “
Rheology of a dual crosslink self-healing gel: Theory and measurement using parallel-plate torsional rheometry
,”
J. Rheol.
59
,
643
665
(
2015
).
130.
Venkata
,
S. P.
,
K.
Cui
,
J.
Guo
,
A. T.
Zehnder
,
J. P.
Gong
, and
C.
Hui
, “
Constitutive modeling of bond breaking and healing kinetics of physical polyampholyte (PA) gel
,”
Extreme Mech. Lett.
43
,
101184
(
2021
).
131.
Pamulaparthi Venkata
,
S.
,
K.
Cui
,
J.
Guo
,
A. T.
Zehnder
,
J. P.
Gong
, and
C.-Y.
Hui
, “
Constitutive modeling of strain-dependent bond breaking and healing kinetics of chemical polyampholyte (PA) gel
,”
Soft Matter
17
,
4161
4169
(
2021
).
132.
Demetriou
,
M. D.
,
M. E.
Launey
,
G.
Garrett
,
J. P.
Schramm
,
D. C.
Hofmann
,
W. L.
Johnson
, and
R. O.
Ritchie
, “
A damage-tolerant glass
,”
Nat. Mater.
10
,
123
128
(
2011
).
133.
Liao
,
X.
,
M.
Dulle
,
J.
Martins
,
D.
Souza
,
R. B.
Wehrspohn
,
S.
Agarwal
,
S.
Förster
,
H.
Hou
,
P.
Smith
, and
A.
Greiner
, “
Robust and sustainable polymeric materials
,”
Science
366
,
1376
1379
(
2019
).
134.
Zhang
,
Y.
,
F. M.
Heim
,
J. L.
Bartlett
,
N.
Song
,
D.
Isheim
, and
X.
Li
, “
Bioinspired, graphene-enabled Ni composites with high strength and toughness
,”
Sci. Adv.
5
,
eaav5577
(
2019
).
135.
Hays
,
C. C.
,
C. P.
Kim
, and
W. L.
Johnson
, “
Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions
,”
Phys. Rev. Lett.
84
,
2901
2904
(
2000
).
136.
Ritchie
,
R. O.
, “
The conflicts between strength and toughness
,”
Nat. Mater.
10
,
817
822
(
2011
).
137.
Ye
,
Y. N.
,
K.
Cui
,
W.
Hong
,
X.
Li
,
C.
Yu
,
D.
Hourdet
,
T.
Nakajima
,
T.
Kurokawa
, and
J. P.
Gong
, “
Molecular mechanism of abnormally large nonsoftening deformation in a tough hydrogel
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2014694118
(
2021
).
138.
Ye
,
Y. N.
,
M.
Frauenlob
,
L.
Wang
,
M.
Tsuda
,
T. L.
Sun
,
K.
Cui
,
R.
Takahashi
,
H. J.
Zhang
,
T.
Nakajima
,
T.
Nonoyama
,
T.
Kurokawa
,
S.
Tanaka
, and
J. P.
Gong
, “
Tough and self-recoverable thin hydrogel membranes for biological applications
,”
Adv. Funct. Mater.
28
,
1801489
(
2018
).
139.
Long
,
R.
,
C. Y.
Hui
,
J. P.
Gong
, and
E.
Bouchbinder
, “
The fracture of highly deformable soft materials: A tale of Two length scales
,”
Annu. Rev. Condens. Matter Phys.
12
,
71
94
(
2021
).
140.
Creton
,
C.
, and
M.
Ciccotti
, “
Fracture and adhesion of soft materials: A review
,”
Rep. Prog. Phys.
79
,
046601
(
2016
).
141.
Bai
,
R.
,
J.
Yang
, and
Z.
Suo
, “
Fatigue of hydrogels
,”
Eur. J. Mech. A Solids
74
,
337
370
(
2019
).
142.
Zheng
,
Y.
,
T.
Matsuda
,
T.
Nakajima
,
W.
Cui
,
Y.
Zhang
,
C.-Y.
Hui
,
T.
Kurokawa
, and
J. P.
Gong
, “
How chain dynamics affects crack initiation in double-network gels
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2111880118
(
2021
).
143.
Slootman
,
J.
,
V.
Waltz
,
C. J.
Yeh
,
C.
Baumann
,
R.
Göstl
,
J.
Comtet
, and
C.
Creton
, “
Quantifying rate-and temperature-dependent molecular damage in elastomer fracture
,”
Phys. Rev. X
10
,
041045
(
2020
).
144.
Liu
,
C.
,
H.
Kadono
,
H.
Yokoyama
,
K.
Mayumi
, and
K.
Ito
, “
Crack propagation resistance of slide-ring gels
,”
Polymer
181
,
121782
(
2019
).
145.
Baumberger
,
T.
,
C.
Caroli
, and
D.
Martina
, “
Solvent control of crack dynamics in a reversible hydrogel
,”
Nat. Mater.
5
,
552
555
(
2006
).
146.
Lake
,
G. J.
, and
A. G.
Thomas
, “
The strength of highly elastic materials
,”
Proc. R. Soc. A
300
,
108
119
(
1967
).
147.
Creton
,
C.
, “
50th anniversary perspective: Networks and gels: Soft but dynamic and tough
,”
Macromolecules
50
,
8297
8316
(
2017
).
148.
Mayumi
,
K.
, and
K.
Ito
, “
Structure and dynamics of polyrotaxane and slide-ring materials
,”
Polymer
51
,
959
967
(
2010
).
149.
Liu
,
C.
,
H.
Kadono
,
K.
Mayumi
,
K.
Kato
,
H.
Yokoyama
, and
K.
Ito
, “
Unusual fracture behavior of slide-ring gels with movable cross-links
,”
ACS Macro Lett.
6
,
1409
1413
(
2017
).
150.
Yasuda
,
Y.
,
M.
Toda
,
K.
Mayumi
,
H.
Yokoyama
,
H.
Morita
, and
K.
Ito
, “
Sliding dynamics of ring on polymer in rotaxane: A coarse-grained molecular dynamics simulation study
,”
Macromolecules
52
,
3787
3793
(
2019
).
151.
Yasuda
,
Y.
,
Y.
Hidaka
,
K.
Mayumi
,
T.
Yamada
,
K.
Fujimoto
,
S.
Okazaki
,
H.
Yokoyama
, and
K.
Ito
, “
Molecular dynamics of polyrotaxane in solution investigated by quasi-elastic neutron scattering and molecular dynamics simulation: Sliding motion of rings on polymer
,”
J. Am. Chem. Soc.
141
,
9655
9663
(
2019
).
152.
Kato
,
K.
,
Y.
Ikeda
, and
K.
Ito
, “
Direct determination of cross-link density and its correlation with the elastic modulus of a gel with slidable cross-links
,”
ACS Macro Lett.
8
,
700
704
(
2019
).
153.
Sakumichi
,
N.
, and
K.
Okumura
, “
Exactly solvable model for a velocity jump observed in crack propagation in viscoelastic solids
,”
Sci. Rep.
7
,
1
11
(
2017
).
154.
Carbone
,
G.
, and
B. N. J.
Persson
, “
Hot cracks in rubber: Origin of the giant toughness of rubberlike materials
,”
Phys. Rev. Lett.
95
,
114301
(
2005
).
155.
Ohira
,
M.
,
T.
Katashima
,
M.
Naito
,
D.
Aoki
,
Y.
Yoshikawa
,
H.
Iwase
,
S.
Takata
,
K.
Miyata
,
U.
Chung
,
T.
Sakai
,
M.
Shibayama
, and
X.
Li
, “
Star-polymer–DNA gels showing highly predictable and tunable mechanical responses
,”
Adv. Mater.
(published online, 2022).
156.
Hui
,
C.
,
F.
Cui
,
A.
Zehnder
, and
F. J.
Vernerey
, “
Physically motivated models of polymer networks with dynamic cross-links: Comparative study and future outlook
,”
Proc. R. Soc. A
477
,
20210608
(
2021
).
You do not currently have access to this content.