Chemically responsive polymers are macromolecules that respond to local variations of the chemical composition of the solution by changing their conformation, with notable examples including polyelectrolytes, proteins, and DNA. The polymer conformation changes can occur in response to changes in the pH, the ionic strength, or the concentration of a generic solute that interacts with the polymer. These chemical stimuli can lead to drastic variations of the polymer flexibility and even trigger a transition from a coil to a globule polymer conformation. In many situations, the spatial distribution of the chemical stimuli can be highly inhomogeneous, which can lead to large spatial variations of polymer conformation and of the rheological properties of the mixture. In this paper, we develop a theory for the flow of a mixture of solute and chemically responsive polymers. The approach is valid for generic flows and inhomogeneous distributions of polymers and solutes. To model the polymer conformation changes introduced by the interactions with the solute, we consider the polymers as linear elastic dumbbells whose spring stiffness depends on the solute concentration. We use Onsager’s variational formalism to derive the equations governing the evolution of the variables, which unveils novel couplings between the distribution of dumbbells and that of the solute. Finally, we use a linear stability analysis to show that the governing equations predict an equilibrium phase separation and a distinct shear-induced phase separation whereby a homogeneous distribution of solute and dumbbells spontaneously demix. Similar phase transitions have been observed in previous experiments using stimuli-responsive polymers and may play an important role in living systems.

1.
Gil
,
E.
, and
S.
Hudson
, “
Stimuli-reponsive polymers and their bioconjugates
,”
Prog. Polym. Sci.
29
,
1173
1222
(
2004
).
2.
Jeong
,
B.
, and
A.
Gutowska
, “
Lessons from nature: Stimuli-responsive polymers and their biomedical applications
,”
Trends Biotechnol.
20
,
305
311
(
2002
).
3.
Stuart
,
M. A. C.
,
W. T. S.
Huck
,
J.
Genzer
,
M.
Müller
,
C.
Ober
,
M.
Stamm
,
G. B.
Sukhorukov
,
I.
Szleifer
,
V. V.
Tsukruk
,
M.
Urban
,
F.
Winnik
,
S.
Zauscher
,
I.
Luzinov
, and
S.
Minko
, “
Emerging applications of stimuli-responsive polymer materials
,”
Nat. Mater.
9
,
101
113
(
2010
).
4.
Gennes
,
P. D.
,
P.
Pincus
,
R.
Velasco
, and
F.
Brochard
, “
Remarks on polyelectrolyte conformation
,”
J. Phys. I
37
,
1461
1473
(
1976
).
5.
Odijk
,
T.
, “
Polyelectrolytes near the rod limit
,”
J. Polym. Sci., Polym. Phys. Ed.
15
,
477
483
(
1977
).
6.
Fixman
,
M.
, “
The flexibility of polyelectrolyte molecules
,”
J. Chem. Phys.
76
,
6346
6353
(
1982
).
7.
Dobrynin
,
A.
, and
M.
Rubinstein
, “
Theory of polyelectrolytes in solutions and at surfaces
,”
Prog. Polym. Sci.
30
,
1049
1118
(
2005
).
8.
Marko
,
J. F.
, and
E. D.
Siggia
, “
Stretching DNA
,”
Macromolecules
28
,
8759
8770
(
1995
).
9.
Baumann
,
C. G.
,
S. B.
Smith
,
V. A.
Bloomfield
, and
C.
Bustamante
, “
Ionic effects on the elasticity of single DNA molecules
,”
Proc. Natl. Acad. Sci.
94
,
6185
6190
(
1997
).
10.
Guilbaud
,
S.
,
L.
Salomé
,
N.
Destainville
,
M.
Manghi
, and
C.
Tardin
, “
Dependence of DNA persistence length on ionic strength and ion type
,”
Phys. Rev. Lett.
122
,
028102
(
2019
).
11.
Schild
,
H. G.
,
M.
Muthukumar
, and
D. A.
Tirrell
, “
Cononsolvency in mixed aqueous solutions of poly(N-isopropylacrylamide)
,”
Macromolecules
24
,
948
952
(
1991
).
12.
Zhang
,
Y.
,
S.
Furyk
,
D. E.
Bergbreiter
, and
P. S.
Cremer
, “
Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series
,”
J. Am. Chem. Soc.
127
,
14505
14510
(
2005
).
13.
Mukherji
,
D.
,
C. M.
Marques
, and
K.
Kremer
, “
Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption
,”
Nat. Commun.
5
,
4882
(
2014
).
14.
Erdel
,
F.
, and
K.
Rippe
, “
Formation of chromatin subcompartments by phase separation
,”
Biophys. J.
114
,
2262
2270
(
2018
).
15.
Parker
,
A. V.
,
D.
Mann
,
S. B.
Tzokov
,
L. C.
Hwang
, and
J. R. C.
Bergeron
, “
The structure of the bacterial DNA segregation ATPase filament reveals the conformational plasticity of ParA upon DNA binding
,”
Nat. Commun.
12
,
5166
(
2021
).
16.
Ha
,
T.
,
X.
Zhuang
,
H. D.
Kim
,
J. W.
Orr
,
J. R.
Williamson
, and
S.
Chu
, “
Ligand-induced conformational changes observed in single RNA molecules
,”
Proc. Natl. Acad. Sci.
96
,
9077
9082
(
1999
).
17.
Barbieri
,
M.
,
M.
Chotalia
,
J.
Fraser
,
L.-M.
Lavitas
,
J.
Dostie
,
A.
Pombo
, and
M.
Nicodemi
, “
Complexity of chromatin folding is captured by the strings and binders switch model
,”
Proc. Natl. Acad. Sci.
109
,
16173
16178
(
2012
).
18.
Chou
,
H.-Y.
, and
A.
Aksimentiev
, “
Single-protein collapse determines phase equilibria of a biological condensate
,”
J. Phys. Chem. Lett.
11
,
4923
4929
(
2020
).
19.
Hyman
,
A. A.
,
C. A.
Weber
, and
F.
Jülicher
, “
Liquid-liquid phase separation in biology
,”
Annu. Rev. Cell Dev. Biol.
30
,
39
58
(
2014
).
20.
Brangwynne
,
C. P.
,
P.
Tompa
, and
R. V.
Pappu
, “
Polymer physics of intracellular phase transitions
,”
Nat. Phys.
11
,
899
904
(
2015
).
21.
Shin
,
Y.
, and
C. P.
Brangwynne
, “
Liquid phase condensation in cell physiology and disease
,”
Science
357
,
eaaf4382
(
2017
).
22.
Choi
,
J.-M.
,
A. S.
Holehouse
, and
R. V.
Pappu
, “
Physical principles underlying the complex biology of intracellular phase transitions
,”
Annu. Rev. Biophys.
49
,
107
133
(
2020
).
23.
Diamant
,
H.
, and
D.
Andelman
, “
Self-assembly in mixtures of polymers and small associating molecules
,”
Macromolecules
33
,
8050
8061
(
2000
).
24.
Levy
,
A.
,
R.
Feinstein
, and
C. E.
Diesendruck
, “
Mechanical unfolding and thermal refolding of single-chain nanoparticles using ligand–metal bonds
,”
J. Am. Chem. Soc.
141
,
7256
7260
(
2019
).
25.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
).
26.
Rubinstein
,
M.
,
R. H.
Colby
, and
A. V.
Dobrynin
, “
Dynamics of semidilute polyelectrolyte solutions
,”
Phys. Rev. Lett.
73
,
2776
2779
(
1994
).
27.
Dobrynin
,
A. V.
,
R. H.
Colby
, and
M.
Rubinstein
, “
Scaling theory of polyelectrolyte solutions
,”
Macromolecules
28
,
1859
1871
(
1995
).
28.
Chen
,
G.
,
A.
Perazzo
, and
H. A.
Stone
, “
Influence of salt on the viscosity of polyelectrolyte solutions
,”
Phys. Rev. Lett.
124
,
177801
(
2020
).
29.
Chen
,
G.
,
A.
Perazzo
, and
H. A.
Stone
, “
Electrostatics, conformation, and rheology of unentangled semidilute polyelectrolyte solutions
,”
J. Rheol.
65
,
507
526
(
2021
).
30.
Giudice
,
F. D.
,
V.
Calcagno
,
V. E.
Taliento
,
F.
Greco
,
P. A.
Netti
, and
P. L.
Maffettone
, “
Relaxation time of polyelectrolyte solutions: When mu-rheometry steps in charge
,”
J. Rheol.
61
,
13
21
(
2017
).
31.
Turkoz
,
E.
,
A.
Perazzo
,
C. B.
Arnold
, and
H. A.
Stone
, “
Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions
,”
Appl. Phys. Lett.
112
,
203701
(
2018
).
32.
Zhang
,
X.
,
Y.
Vidavsky
,
S.
Aharonovich
,
S. J.
Yang
,
M. R.
Buche
,
C. E.
Diesendruck
, and
M. N.
Silberstein
, “
Bridging experiments and theory: Isolating the effects of metal–ligand interactions on viscoelasticity of reversible polymer networks
,”
Soft Matter
16
,
8591
8601
(
2020
).
33.
Yanase
,
H.
,
P.
Moldenaers
,
J.
Mewis
,
V.
Abetz
,
J.
van Egmond
, and
G. G.
Fuller
, “
Structure and dynamics of a polymer solution subject to flow-induced phase separation
,”
Rheol. Acta
30
,
89
97
(
1991
).
34.
Larson
,
R. G.
, “
Flow-induced mixing, demixing, and phase transitions in polymeric fluids
,”
Rheol. Acta
31
,
497
520
(
1992
).
35.
Fielding
,
S. M.
, “
Shear banding in soft glassy materials
,”
Rep. Prog. Phys.
77
,
102601
(
2014
).
36.
Cromer
,
M.
,
M. C.
Villet
,
G. H.
Fredrickson
, and
L. G.
Leal
, “
Shear banding in polymer solutions
,”
Phys. Fluids
25
,
051703
(
2013
).
37.
Cromer
,
M.
,
G. H.
Fredrickson
, and
L. G.
Leal
, “
A study of shear banding in polymer solutions
,”
Phys. Fluids
26
,
063101
(
2014
).
38.
Divoux
,
T.
,
M. A.
Fardin
,
S.
Manneville
, and
S.
Lerouge
, “
Shear banding of complex fluids
,”
Annu. Rev. Fluid Mech.
48
,
81
103
(
2016
).
39.
Germann
,
N.
, “
Shear banding in semidilute entangled polymer solutions
,”
Curr. Opin. Colloid Interface Sci.
39
,
1
10
(
2019
).
40.
Burroughs
,
M. C.
,
A. M.
Shetty
,
L. G.
Leal
, and
M. E.
Helgeson
, “
Coupled nonhomogeneous flows and flow-enhanced concentration fluctuations during startup shear of entangled polymer solutions
,”
Phys. Rev. Fluids
5
,
043301
(
2020
).
41.
Larson
,
R. G.
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworth-Heinemann
,
2013
).
42.
Larson
,
R. G.
, “
The rheology of dilute solutions of flexible polymers: Progress and problems
,”
J. Rheol.
49
,
1
70
(
2005
).
43.
Bird
,
R. B.
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory
(
Wiley
,
New York
,
1987
).
44.
Doi
,
M.
, “
Onsager’s variational principle in soft matter
,”
J. Phys. Condens. Matter
23
,
284118
(
2011
).
45.
Arroyo
,
M.
,
N.
Walani
,
A.
Torres-Sánchez
, and
D.
Kaurin
, “Onsager’s variational principle in soft matter: Introduction and application to the dynamics of adsorption of proteins onto fluid membranes,” in The Role of Mechanics in the Study of Lipid Bilayers (Springer, New York, 2018), pp. 287–332.
46.
Zhou
,
J.
, and
M.
Doi
, “
Dynamics of viscoelastic filaments based on Onsager principle
,”
Phys. Rev. Fluids
3
,
084004
(
2018
).
47.
Beris
,
A. N.
, and
B. J.
Edwards
,
Thermodynamics of Flowing Systems: With Internal Microstructure
(
Oxford University Press on Demand
,
1994
).
48.
Öttinger
,
H. C.
,
Beyond Equilibrium Thermodynamics
(
John Wiley & Sons
,
New York
,
2005
).
49.
Mavrantzas
,
V. G.
, and
A. N.
Beris
, “
Modeling of the rheology and flow-induced concentration changes in polymer solutions
,”
Phys. Rev. Lett.
69
,
273
276
(
1992
).
50.
Vázquez-Quesada
,
A.
,
M.
Ellero
, and
P.
Español
, “
Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations
,”
Phys. Rev. E
79
,
056707
(
2009
).
51.
Germann
,
N.
,
L.
Cook
, and
A.
Beris
, “
Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions
,”
J. Non-Newtonian Fluid Mech.
196
,
51
57
(
2013
).
52.
Germann
,
N.
,
A. K.
Gurnon
,
L.
Zhou
,
L.
P.Cook
,
A. N.
Beris
, and
N. J.
Wagner
, “
Validation of constitutive modeling of shear banding, threadlike wormlike micellar fluids
,”
J. Rheol.
60
,
983
999
(
2016
).
53.
Hütter
,
M.
,
P. D.
Olmsted
, and
D. J.
Read
, “
Fluctuating viscoelasticity based on a finite number of dumbbells
,”
Eur. Phys. J. E
43
,
71
(
2020
).
54.
Stephanou
,
P. S.
,
I. C.
Tsimouri
, and
V. G.
Mavrantzas
, “
Two-species models for the rheology of associative polymer solutions: Derivation from nonequilibrium thermodynamics
,”
J. Rheol.
64
,
1003
1016
(
2020
).
55.
Doi
,
M.
,
Soft Matter Physics
(
Oxford University
,
New York
,
2013
).
56.
Tanner
,
R. I.
, “
Stresses in dilute solutions of bead-nonlinear-spring macromolecules. III. Friction coefficient varying with dumbbell extension
,”
Trans. Soc. Rheol.
19
,
557
582
(
1975
).
57.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
58.
Aubert
,
J. H.
, and
M.
Tirrell
, “
Macromolecules in nonhomogeneous velocity gradient fields
,”
J. Chem. Phys.
72
,
2694
2701
(
1980
).
59.
Aubert
,
J. H.
,
S.
Prager
, and
M.
Tirrell
, “
Macromolecules in nonhomogeneous velocity gradient fields. II
,”
J. Chem. Phys.
73
,
4103
4112
(
1980
).
60.
Helfand
,
E.
, and
G. H.
Fredrickson
, “
Large fluctuations in polymer solutions under shear
,”
Phys. Rev. Lett.
62
,
2468
2471
(
1989
).
61.
Doi
,
M.
, and
A.
Onuki
, “
Dynamic coupling between stress and composition in polymer solutions and blends
,”
J. Phys. (Paris) II
2
,
1631
1656
(
1992
).
62.
Tsouka
,
S.
,
Y.
Dimakopoulos
,
V.
Mavrantzas
, and
J.
Tsamopoulos
, “
Stress-gradient induced migration of polymers in corrugated channels
,”
J. Rheol.
58
,
911
947
(
2014
).
63.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
New York
,
1988
).
64.
Owens
,
R. G.
, and
T. N.
Phillips
,
Computational Rheology
(
World Scientific
,
Singapore
,
2002
).
65.
Leal
,
L. G.
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
(
Cambridge University
,
Cambridge
,
2007
).
66.
Peterson
,
J. D.
,
M.
Cromer
,
G. H.
Fredrickson
, and
L. G.
Leal
, “
Shear banding predictions for the two-fluid rolie-poly model
,”
J. Rheol.
60
,
927
951
(
2016
).
67.
Peterson
,
J. D.
,
G. H.
Fredrickson
, and
L. G.
Leal
, “
Shear induced demixing in bidisperse and polydisperse polymer blends: Predictions from a multifluid model
,”
J. Rheol.
64
,
1391
1408
(
2020
).
68.
Burroughs
,
M. C.
,
Y.
Zhang
,
A. M.
Shetty
,
C. M.
Bates
,
L. G.
Leal
, and
M. E.
Helgeson
, “
Flow-induced concentration nonuniformity and shear banding in entangled polymer solutions
,”
Phys. Rev. Lett.
126
,
207801
(
2021
).
You do not currently have access to this content.