There is no universal model for thixotropy, and comparing thixotropic effects between different fluids is a subtle yet challenging problem. We introduce a generalized (model-insensitive) framework for comparing thixotropic properties based on thixotropic spectra. A superposition of exponential stress modes distributed over thixotropic time scales is used to quantify buildup and breakdown times and mode strengths in response to step-change input. This mathematical framework is tested with several experimental step-shear rate data on colloidal suspensions. Low-dimensional metrics based on moments of the distribution reveal characteristic average thixotropic properties, which are visualized on Ashby-style diagrams. This method outlines a framework for describing thixotropy across a diverse range of microstructures, supporting scientific studies as well as material selection for engineering design applications.

1.
Fan
,
F. Y.
,
W. H.
Woodford
,
Z.
Li
,
N.
Baram
,
K. C.
Smith
,
A.
Helal
,
G. H.
McKinley
,
W. C.
Carter
, and
Y. M.
Chiang
, “
Polysulfide flow batteries enabled by percolating nanoscale conductor networks
,”
Nano Lett.
14
,
2210
2218
(
2014
).
2.
Helal
,
A.
,
T.
Divoux
, and
G. H.
McKinley
, “
Simultaneous rheoelectric measurements of strongly conductive complex fluids
,”
Phys. Rev. Appl.
6
,
1
19
(
2016
).
3.
Narayanan
,
A.
,
F.
Mugele
, and
M. H. G.
Duits
, “
Mechanical history dependence in carbon black suspensions for flow batteries: A rheo-impedance study
,”
Langmuir
33
,
1629
1638
(
2017
).
4.
Wang
,
Y.
, and
R. H.
Ewoldt
, “New insights on carbon black suspension rheology—Anisotropic thixotropy and antithixotropy,”
J. Rheol.
66
,
937
953
(2022).
5.
Dimitriou
,
C. J.
, and
G. H.
McKinley
, “
A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid
,”
Soft Matter
10
,
6619
6644
(
2014
).
6.
Glicerina
,
V.
,
F.
Balestra
,
M. D.
Rosa
, and
S.
Romani
, “
Microstructural and rheological properties of white chocolate during processing
,”
Food Bioprocess Technol.
8
,
770
776
(
2015
).
7.
Jin
,
L.
,
Z.
Wu
,
T.
Wei
,
J.
Zhai
, and
X.
Zhang
, “
Dye-sensitized solar cell based on blood mimetic thixotropy sol–gel electrolyte
,”
Chem. Commun.
47
,
997
999
(
2011
).
8.
Armstrong
,
M. J.
, and
J.
Tussing
, “
A methodology for adding thixotropy to oldroyd-8 family of viscoelastic models for characterization of human blood
,”
Phys. Fluids
32
,
094111
(
2020
).
9.
Dullaert
,
K.
, and
J.
Mewis
, “
A model system for thixotropy studies
,”
Rheol. Acta
45
,
23
32
(
2005
).
10.
Alessandrini
,
A.
,
R.
Lapasin
, and
F.
Sturzi
, “
The kinetics of thixotropic behaviour in clay/kaolin aqueous suspensions
,”
Chem. Eng. Commun.
17
,
13
22
(
1982
).
11.
Beris
,
A. N.
,
E.
Stiakakis
, and
D.
Vlassopoulos
, “
A thermodynamically consistent model for the thixotropic behavior of concentrated star polymer suspensions
,”
J. Non-Newtonian Fluid Mech.
152
,
76
85
(
2008
).
12.
Burgos
,
G. R.
,
A. N.
Alexandrou
, and
V.
Entov
, “
Thixotropic rheology of semisolid metal suspensions
,”
J. Mater. Process. Technol.
110
,
164
176
(
2001
).
13.
Kelessidis
,
V.
, “
Investigations on the thixotropy of bentonite suspensions
,”
Energy Sources A
30
,
1729
1746
(
2008
).
14.
Mewis
,
J.
, “
Thixotropy—A general review
,”
J. Non-Newtonian Fluid Mech.
6
,
1
20
(
1979
).
15.
Barnes
,
H. A.
, “
Thixotropy—A review
,”
J. Non-Newtonian Fluid Mech.
70
,
1
33
(
1997
).
16.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147–148
,
214
227
(
2009
).
17.
Larson
,
R. G.
, and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
,
477
501
(
2019
).
18.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University Press
,
Cambridge
,
2012
).
19.
Joshi
,
Y. M.
, “
Thixotropy, nonmonotonic stress relaxation and the second law of thermodynamics
,”
J. Rheol.
66
,
111
123
(
2021
).
20.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
Quantitative nonlinear thixotropic model with stretched exponential response in transient shear flows
,”
J. Rheol.
60
,
1301
1315
(
2016
).
21.
Larson
,
R. G.
, “
Constitutive equations for thixotropic fluids
,”
J. Rheol.
59
,
595
611
(
2015
).
22.
Tschoegl
,
N. W.
,
The Phenomenological Theory of Linear Viscoelastic Behavior
(
Springer-Verlag
,
Berlin
,
1989
).
23.
Vlad
,
M. O.
,
R.
Metzler
,
T. F.
Nonnenmacher
, and
M. C.
Mackey
, “
Universality classes for asymptotic behavior of relaxation processes in systems with dynamical disorder: Dynamical generalizations of stretched exponential
,”
Energy Sources A
37
,
2279
2306
(
1996
).
24.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000446 for more information about the continuous spectrum for the stretched exponential, the parameters for the step down data fits for all materials to the stretched exponential model, the steady shear data for laponite and carbopol, and a brief explanation of the summation term in the discrete spectrum formulas.
25.
Vermant
,
J.
,
P.
Walker
,
P.
Moldenaers
, and
J.
Mewis
, “
Orthogonal versus parallel superposition measurements
,”
J. Non-Newtonian Fluid Mech.
79
,
173
189
(
1998
).
26.
Sung
,
S. H.
,
S.
Kim
,
J.
Hendricks
,
C.
Clasen
, and
K. H.
Ahn
, “
Orthogonal superposition rheometry of colloidal gels: Time-shear rate superposition
,”
Soft Matter
14
,
8651
8659
(
2018
).
27.
Martinetti
,
L.
,
J. M.
Soulages
, and
R. H.
Ewoldt
, “
Continuous relaxation spectra for constitutive models in medium-amplitude oscillatory shear
,”
J. Rheol.
62
,
1271
1298
(
2018
).
28.
Martinetti
,
L.
, and
R. H.
Ewoldt
, “
Time-strain separability in medium amplitude oscillatory shear
,”
Phys. Fluids
31
,
021213
(
2019
).
29.
Dullaert
,
K.
, and
J.
Mewis
, “
A structural kinetics model for thixotropy
,”
J. Non-Newtonian Fluid Mech.
139
,
21
30
(
2006
).
30.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
A multimode structural kinetics constitutive equation for the transient rheology of thixotropic elasto-viscoplastic fluids
,”
J. Rheol.
62
,
321
342
(
2018
).
31.
Johnston
,
D. C.
, “
Stretched exponential relaxation arising from a continuous sum of exponential decays
,”
Phys. Rev. B
74
,
184430
(
2006
).
32.
Berberan-Santos
,
M. N.
,
E. N.
Bodunov
, and
B.
Valeur
, “
Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential)
,”
Chem. Phys.
315
,
171
182
(
2005
).
33.
Corman
,
R. E.
, and
R. H.
Ewoldt
, “
Mapping linear viscoelasticity for design and tactile intuition
,”
Appl. Rheol.
29
,
141
161
(
2019
).
34.
Ashby
,
M. F.
,
Materials Selection in Mechanical Design
, 4th ed. (
Elsevier
,
New York
,
2011
).
35.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
Wiley
,
New York
,
1987
), Vol. 1.
36.
Piau
,
J. M.
, “
Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges meso- and macroscopic properties, constitutive equations and scaling laws
,”
J. Non-Newtonian Fluid Mech.
144
,
1
29
(
2007
).
37.
Divoux
,
T.
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
,
018304
(
2013
).
38.
Blackwell
,
B. C.
,
M. E.
Deetjen
,
J. E.
Gaudio
, and
R. H.
Ewoldt
, “
Sticking and splashing in yield-stress fluid drop impacts on coated surfaces
,”
Phys. Fluids
27
,
043101
(
2015
).
39.
Sen
,
S.
,
A. G.
Morales
, and
R. H.
Ewoldt
, “
Viscoplastic drop impact on thin films
,”
J. Fluid Mech.
891
,
A27
(
2020
).
40.
Bonn
,
D.
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
035005
(
2017
).
41.
Radhakrishnan
,
R.
, and
S. M.
Fielding
, “
Shear banding of soft glassy materials in large amplitude oscillatory shear
,”
Phys. Rev. Lett.
117
,
188001
(
2016
).
42.
Ewoldt
,
R. H.
,
M. T.
Johnston
, and
L. M.
Caretta
, “Experimental challenges of shear rheology: How to avoid bad data,” in Complex Fluids in Biological Systems, Springer Biological Engineering Series, edited by S. Spagnolie (Springer, New York, 2015), pp. 207–241.
43.
Armstrong
,
M. J.
,
A. N.
Beris
,
S. A.
Rogers
, and
S. A.
Wagner
, “
Dynamic shear rheology of a thixotropic suspension: Comparison of an improved structure-based model with large amplitude oscillatory shear experiments
,”
J. Rheol.
60
,
433
450
(
2016
).
44.
Singh
,
P. K.
,
J. M.
Soulages
, and
R. H.
Ewoldt
, “
On fitting data for parameter estimates: Residual weighting and data representation
,”
Rheol. Acta
58
,
341
359
(
2019
).
45.
Tikhonov
,
A. N.
, and
V. Y.
Arsenin
, “
Solutions of ill-posed problems
,”
SIAM Rev.
21
,
266
267
(
1979
).
46.
Kontogiorgos
,
V.
, “
Calculation of relaxation spectra from mechanical spectra in MATLAB
,”
Polym. Test.
29
,
1021
1025
(
2010
).
47.
Kontogiorgos
,
V.
, “Calculation of relaxation spectra from stress relaxation measurements,” in Biopolymers, edited by M. Elnashar (IntechOpen, Rijeka, 2010), Chap. 25.
48.
Goodeve
,
C.
, and
G.
Whitfield
, “
The measurement of thixotropy in absolute units
,”
Trans. Faraday Soc.
34
,
511
520
(
1938
).
49.
Moore
,
F.
, “
The rheology of ceramic slips and bodies
,”
Trans. Br. Ceram. Soc.
58
,
470
494
(
1959
).
50.
Sen
,
S.
,
A. G.
Morales
, and
R. H.
Ewoldt
, “
Thixotropy in viscoplastic drop impact on thin films
,”
Phys. Rev. Fluids
6
,
043301
(
2021
).
51.
Jamali
,
S.
,
R. C.
Armstrong
, and
G. H.
McKinley
, “
Multiscale nature of thixotropy and rheological hysteresis in attractive colloidal suspensions under shear
,”
Phys. Rev. Lett.
123
,
248003
(
2019
).
52.
Anscombe
,
F. J.
, “
Graphs in statistical analysis
,”
Am. Stat.
27
,
17
21
(
1973
).
53.
Freund
,
J. B.
, and
R. H.
Ewoldt
, “
Quantitative rheological model selection: Good fits versus credible models using Bayesian inference
,”
J. Rheol.
59
,
667
701
(
2015
).
54.
Mours
,
M.
, and
H. H.
Winter
, “
Time-resolved rheometry
,”
Rheol. Acta
33
,
385
397
(
1994
).
55.
Laukkanen
,
O.-V.
,
H. H.
Winter
, and
J.
Seppälä
, “
Characterization of physical aging by time-resolved rheometry: Fundamentals and application to bituminous binders
,”
Rheol. Acta
57
,
745
756
(
2018
).
56.
Geri
,
M.
,
B.
Keshavarz
,
T.
Divoux
,
C.
Clasen
,
D. J.
Curtis
, and
G. H.
McKinley
, “
Time-resolved mechanical spectroscopy of soft materials via optimally windowed chirps
,”
Phys. Rev. X
8
,
041042
(
2018
).
57.
Jamali
,
S.
, and
G. H.
McKinley
, “
The Mnemosyne number and the rheology of remembrance
,”
J. Rheol.
66
,
1027
1039
(
2022
).
58.
Ewoldt
,
R. H.
, and
C.
Saengow
, “
Designing complex fluids
,”
Annu. Rev. Fluid Mech.
54
,
413
441
(
2022
).
59.
Corker
,
A.
,
H. C.-H.
Ng
,
R. J.
Poole
, and
E.
García-Tuñón
, “
3D printing with 2D colloids: Designing rheology protocols to predict “printability” of soft-materials
,”
Soft Matter
15
,
1444
1456
(
2019
).
60.
Blackwell
,
B. C.
,
A. E.
Nadhan
,
A.
Wu
, and
R. H.
Ewoldt
, “Fire suppression with yield-stress fluids,” Gallery of Fluid Motion, APS Division of Fluid Dynamics 68th Annual Meeting (2015).
61.
Sen
,
S.
, and
R. H.
Ewoldt
, “Stick or splash? Thixotropy decides!” Gallery of Fluid Motion, APS Division of Fluid Dynamics 71st Annual Meeting (2018).

Supplementary Material

You do not currently have access to this content.