Fungi such as Candida albicans exist in biofilm phenotypes, which present as viscoelastic materials; however, a method to measure linear viscoelastic moduli, yield stress, and yield strain is lacking. Characterization methods for fungal materials have been limited to techniques specific to particular industries. Here, we present a method to measure the shear stress, strain amplitude, and creep of C. albicans BWP17 biofilms. Our method includes features tailored to the analysis of fungi including an in vitro growth protocol attuned to the slow growth rates of C. albicans biofilms and a resultant cultured biofilm that has sufficient integrity to be transferred to the rheometer tooling without disrupting its structure. The method's performance is demonstrated by showing that results are insensitive to gap, evaporative sealant, length of experiment, and specimen radius. Multiscale imaging of the fungal biofilm showed complex entanglement networks at the hundred-micrometer scale. For a wild-type strain cultivated for 14 days, using small-amplitude oscillatory rheology, we found that the elastic (G′) and viscous (G″) moduli were nearly independent of frequency over the range 0.1–10 s−1, with magnitudes of 18400±1100 and 1700±140Pa, respectively. The yield stress was approximately 850±60Pa. We modeled the linear creep response of the fungal biofilm and found that C. albicans has a characteristic relaxation time of 810±19s and a viscosity of 8.4±0.2MPas. We applied this method to probe the effects of altered chitin deposition in the C. albicans cell wall. Differences between the biofilm's phenotypic cell shape and rheological properties in mutants with altered chitin synthase activity were resolved. Discovering how genotypic, phenotypic, and environmental factors impact the material properties of these microbial communities can have implications for understanding fungal biofilm growth and aid in the development of remediation strategies.

1.
Donlan
,
R. M.
, “
Biofilms: Microbial life on surfaces
,”
Emerg. Infect. Dis.
8
(
9
),
881
890
(
2002
).
2.
Douglas
,
L. J.
, “
Candida biofilms and their role in infection
,”
Trends Microbiol.
11
(
1
),
30
36
(
2003
).
3.
Cavalheiro
,
M.
, and
M. C.
Teixeira
, “
Candida biofilms: Threats, challenges, and promising strategies
,”
Front. Med.
5
,
28
(
2018
).
4.
Costerton
,
J. W.
,
K.-J.
Cheng
,
G. G.
Geesey
,
T. I.
Ladd
,
J. C.
Nickel
,
M.
Dasgupta
, and
T. J.
Marrie
, “
Bacterial biofilms in nature and disease
,”
Annu. Rev. Microbiol.
41
,
435
464
(
1987
).
5.
Wilking
,
J. N.
,
T. E.
Angelini
,
A.
Seminara
,
M. P.
Brenner
, and
D. A.
Weitz
, “
Biofilms as complex fluids
,”
MRS Bull.
36
(
05
),
385
391
(
2011
).
6.
Stewart
,
E. J.
,
M.
Ganesan
,
J. G.
Younger
, and
M. J.
Solomon
, “
Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly
,”
Sci. Rep.
5
,
13081
(
2015
).
7.
Stewart
,
E. J.
,
D. E.
Payne
,
T. M.
Ma
,
J. S.
VanEpps
,
B. R.
Boles
,
J. G.
Younger
, and
M. J.
Solomon
, “
Effect of antimicrobial and physical treatments on growth of multispecies Staphylococcal biofilms
,”
Appl. Environ. Microbiol.
83
(
12
),
e03483-16
(
2017
).
8.
Pavlovsky
,
L.
,
J. G.
Younger
, and
M. J.
Solomon
, “
In situ rheology of Staphylococcus epidermidis bacterial biofilms
,”
Soft Matter
9
,
122
131
(
2013
).
9.
Rogers
,
S. S.
,
C.
Van Der Walle
, and
T. A.
Waigh
, “
Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa
,”
Langmuir
24
(
23
),
13549
13555
(
2008
).
10.
Stoodley
,
P.
,
I.
Dodds
,
J. D.
Boyle
, and
H. M.
Lappin-Scott
, “
Influence of hydrodynamics and nutrients on biofilm structure
,”
J. Appl. Microbiol.
85
,
19S
28S
(
1998
).
11.
Besemer
,
K.
,
G.
Singer
,
R.
Limberger
,
A. K.
Chlup
,
G.
Hochedlinger
,
I.
Hödl
,
C.
Baranyi
, and
T. J.
Battin
. “
Biophysical controls on community succession in stream biofilms
,”
Appl. Environ. Microbiol.
73
(
15
),
4966
4974
(
2007
).
12.
Stoodley
,
P.
,
R.
Cargo
,
C. J.
Rupp
,
S.
Wilson
, and
I.
Klapper
, “
Biofilm material properties as related to shear-induced deformation and detachment phenomena
,”
J. Ind. Microbiol. Biotechnol.
29
(
6
),
361
367
(
2002
).
13.
Gloag
,
E. S.
,
S.
Fabbri
,
D. J.
Wozniak
, and
P.
Stoodley
, “
Biofilm mechanics: Implications in infection and survival
,”
Biofilm
2,
100017
(
2020
).
14.
Fabbri
,
S.
,
D. A.
Johnston
,
A.
Rmaile
,
B.
Gottenbos
,
M.
De Jager
,
M.
Aspiras
,
M. E.
Starke
,
M. T.
Ward
, and
P.
Stoodley
, “
Streptococcus mutans biofilm transient viscoelastic fluid behaviour during high-velocity microsprays
,”
J. Mech. Behav. Biomed. Mater.
59
,
197
206
(
2016
).
15.
Chew
,
S. C.
,
B.
Kundukad
,
T.
Seviour
,
J. R. C.
Van der Maarel
,
L.
Yang
,
S. A.
Rice
,
P.
Doyle
, and
S.
Kjelleberg
, “
Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides
,”
MBio
5
(
4
),
1
11
(
2014
).
16.
Beroz
,
F.
,
J.
Yan
,
Y.
Meir
,
B.
Sabass
,
H. A.
Stone
,
B. L.
Bassler
, and
N. S.
Wingreen
, “
Verticalization of bacterial biofilms
,”
Nat. Phys.
14
(
9
),
954
960
(
2018
).
17.
Yan
,
J.
,
A. G.
Sharo
,
H. A.
Stone
,
N. S.
Wingreen
, and
B. L.
Bassler
, “
Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging
,”
Proc. Natl. Acad. Sci.
113
,
E5337
E5343
(
2016
).
18.
Qi
,
L.
, and
G. F.
Christopher
, “
Rheological variability of Pseudomonas aeruginosa biofilms
,”
Rheol. Acta
60
,
219
230
(
2021
).
19.
Jana
,
S.
S. G. V.
Charlton
,
L. E.
Eland
,
J. G.
Burgess
,
A.
Wipat
,
T. P.
Curtis
, and
J.
Chen
, “
Nonlinear rheological characteristics of single species bacterial biofilms
,”
npj Biofilms Microbiomes
6,
19
(
2020
).
20.
Yan
,
J.
A.
Moreau
,
S.
Khodaparast
,
A.
Perazzo
,
J.
Feng
,
C.
Fei
,
S.
Mao
,
S.
Mukherjee
,
A.
Košmrlj
,
N. S.
Wingreen
,
B. L.
Bassler
, and
H. A.
Stone
, “
Bacterial biofilm material properties enable removal and transfer by capillary peeling
,”
Adv. Mater.
30
(
46
),
1804153
(
2018
).
21.
Stoodley
,
P.
,
Z.
Lewandowski
,
J. D.
Boyle
, and
H. M.
Lappin-Scott
, “
Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: An in situ investigation of biofilm rheology
,”
Biotechnol. Bioeng.
65
(
1
),
83
92
(
1999
).
22.
Billings
,
N.
,
A.
Birjiniuk
,
T. S.
Samad
,
P. S.
Doyle
, and
K.
Ribbeck
, “
Material properties of biofilms—A review of methods for understanding permeability and mechanics
,”
Rep. Prog. Phys.
78
(
3
),
036601
(
2015
).
23.
Araújo
,
G. R. S.
,
N. B.
Viana
,
F.
Gómez
,
B.
Pontes
, and
S.
Frases
, “
The mechanical properties of microbial surfaces and biofilms
,”
Cell Surf.
5
,
100028
(
2019
).
24.
Gordon
,
V. D.
,
M.
Davis-Fields
,
K.
Kovach
, and
C. A.
Rodesney
, “
Biofilms and mechanics: A review of experimental techniques and findings
,”
J. Phys. D: Appl. Phys.
50
(
22
),
223002
(
2017
).
25.
Sadava
,
D.
,
H. C.
Heller
,
G. H.
Orians
,
W. K.
Purves
, and
D. M.
Hillis
, “
Fungi recyclers, pathogens, parasites, and plant partners
,” in
Life: The Science of Biology
, 8th ed. (
Sinauer Associates Inc.
,
Sunderland
,
MA
,
2008
), pp.
650
669
.
26.
Free
,
S. J.
, “Fungal cell wall organization and biosynthesis,” in Advances in Genetics, edited by T. Friedmann, J. C. Dunlap, S. F. Goodwin (Academic Press, Waltham, MA, 2013), Vol. 81, pp. 33–82.
27.
Mayer
,
F. L.
,
D.
Wilson
, and
B.
Hube
, “
Candida albicans pathogenicity mechanisms
,”
Virulence
4
(
2
),
119
128
(
2013
).
28.
Spellberg
,
B.
,
K. A.
Marr
, and
S. G.
Filler
, “
Candida: What should clinicians and scientists be talking about?
,” in
Candida and Candidiasis
, 2nd ed., edited by
R. A.
Calderone
,
C. J.
Clancy
(
ASM
,
Washington, DC
,
2012
), pp.
1
8
.
29.
Tarifa
,
M. C.
,
D.
Genovese
,
J. E.
Lozano
, and
L. I.
Brugnoni
, “
In situ microstructure and rheological behavior of yeast biofilms from the juice processing industries
,”
Biofouling
34
(
1
),
74
85
(
2018
).
30.
Mitchell
,
A. P.
, “
Dimorphism and virulence in Candida albicans
,”
Curr. Opin. Microbiol.
1
(
6
),
687
692
(
1998
).
31.
Sudbery
,
P.
,
N.
Gow
, and
J.
Berman
, “
The distinct morphogenic states of Candida albicans
,”
Trends Microbiol.
12
(
7
),
317
324
(
2004
).
32.
Song
,
Q.
,
C.
Johnson
,
T. E.
Wilson
,
A.
Kumar
, and
M.
Snyder
, “
Pooled segregant sequencing reveals genetic determinants of yeast pseudohyphal growth
,”
PLoS Genet.
10
(
8
),
e1004570
(
2014
).
33.
Christensen
,
G. D.
,
W. A.
Simpson
,
J. O.
Anglen
, and
B. J.
Gainorl
, “
Methods for evaluating attached bacteria and biofilms
,” in
Handbook of Bacterial Adhesion: Principles, Methods, and Applications
, 1st ed., edited by
Y. H.
An
and
R. J.
Friedman
(
Springer Science & Business Media
,
New York
), pp.
213
233
.
34.
Brugnoni
,
L. I.
,
M. C.
Tarifa
,
J. E.
Lozano
, and
D.
Genovese
, “
In situ rheology of yeast biofilms
,”
Biofouling
30
(
10
),
1269
1279
(
2014
).
35.
Chandra
,
J.
,
D. M.
Kuhn
,
P. K.
Mukherjee
,
L. L.
Hoyer
,
T.
McCormick
, and
M. A.
Ghannoum
, “
Biofilm formation by the fungal pathogen Candida albicans: Development, architecture, and drug resistance
,”
J. Bacteriology
9
(
18
),
109
118
(
2001
).
36.
Berman
,
J.
, and
P. E.
Sudbery
, “
Candida albicans: A molecular revolution built on lessons from budding yeast
,”
Nat. Rev. Genet.
3
(
12
),
918
931
(
2002
).
37.
Chaffin
,
W. L.
,
J. L.
López-Ribot
,
M.
Casanova
,
D.
Gozalbo
, and
J. P.
Martínez
, “
Cell wall and secreted proteins of Candida albicans: Identification, function, and expression
,”
Microbiol. Mol. Biol. Rev.
62
(
1
),
130
180
(
1998
).
38.
Marcilla
,
A.
,
E.
Valentín
, and
R.
Sentandreu
, “
The cell wall structure: Developments in diagnosis and treatment of candidiasis
,”
Int. Microbiol.
1
(
2
),
107
116
(
1998
).
39.
Wilson
,
R. B.
,
D.
Davis
, and
A. P.
Mitchell
, “
Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions
,”
J. Bacteriol.
181
(
6
),
1868
1874
(
1999
).
40.
Walther
,
A.
, and
J.
Wendland
, “
An improved transformation protocol for the human fungal pathogen Candida albicans
,”
Curr. Genet.
42
(
6
),
339
343
(
2003
).
41.
Noble
,
S. M.
, and
A. D.
Johnson
, “
Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans
,”
Eukaryot. Cell
4
(
2
),
298
309
(
2005
).
42.
Chandra
,
J.
,
P. K.
Mukherjee
, and
M. A.
Ghannoum
, “
In vitro growth and analysis of Candida biofilms
,”
Nat. Protoc.
3
(
12
),
1909
1924
(
2008
).
43.
Ramage
,
G.
,
K.
Vande Walle
,
B. L.
Wickes
, and
J. L.
López-Ribot
, “
Biofilm formation by Candida dubliniensis
,”
J. Clin. Microbiol.
39
(
9
),
3234
3240
(
2001
).
44.
Buscall
,
R.
, “
Letter to the editor wall slip in dispersion rheometry
,”
J. Rheol.
54
(
6
),
1177
1183
(
2010
).
45.
Ewoldt
,
R. H.
,
M. T.
Johnston
, and
L. M.
Caretta
, “Experimental challenges of shear rheology: How to avoid bad data,” in
Complex Fluids in Biological Systems
edited by S. Spagnolie (Springer, New York, NY,
2015
), pp.
207
241
.
46.
Hyun
,
K.
,
S. H.
Kim
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear as a way to classify the complex fluids
,”
J. Nonnewton. Fluid Mech.
107
(
1–3
),
51
65
(
2002
).
47.
Walls
,
H. J.
,
S. B.
Caines
,
A. M.
Sanchez
, and
S. A.
Khan
, “
Yield stress and wall slip phenomena in colloidal silica gels
,”
J. Rheol.
47
(
4
),
847
868
(
2003
).
48.
Yang
,
M-C
,
L. E.
Scriven
, and
C. W.
Macosko
, “
Some rheological measurements on magnetic iron oxide suspensions in silicone oil
,”
J. Rheol.
30
(
5
),
1015
1029
(
1986
).
49.
Towler
,
B. W.
,
C. J.
Rupp
,
A. B.
Cunningham
, and
P.
Stoodley
, “
Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis
,”
Biofouling
19
(
5
),
279
285
(
2003
).
50.
Al-Fattani
,
M. A.
, and
L. J.
Douglas
, “
Biofilm matrix of Candida albicans and Candida tropicalis: Chemical composition and role in drug resistance
,”
J. Med. Microbiol.
55
(
8
),
999
1008
(
2006
).
51.
Yannarell
,
S. M.
,
G. M.
Grandchamp
,
S.-Y.
Chen
,
K. E.
Daniels
, and
E. A.
Shank
, “
A dual-species biofilm with emergent mechanical and protective properties
,”
J. Bacteriol.
201
(published online 2019).
52.
Pavlovsky
,
L.
,
R. A.
Sturtevant
,
J. G.
Younger
, and
M. J.
Solomon
, “
Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms
,”
Langmuir
31
(
6
),
2036
2042
(
2015
).
53.
Ganesan
,
M.
,
E. J.
Stewart
,
J.
Szafranski
,
A. E.
Satorius
,
J. G.
Younger
, and
M. J.
Solomon
, “
Molar mass, entanglement and association of the biofilm polysaccharide of Staphylococcus epidermidis
,”
Biomacromolecules
14
(
5
),
1474
1481
(
2013
).
54.
Stewart
,
E. J.
,
A. E.
Satorius
,
J. G.
Younger
, and
M. J.
Solomon
, “
Role of environmental and antibiotic stress on Staphylococcus epidermidis biofilm microstructure
,”
Langmuir
29
,
7017
7024
(
2013
).
55.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000427 for information pertaining to the effects of sandpaper grit size on rheological measurement, images of the biofilm samples pre- and post-rheological testing, the impact of silicon oil on biofilm samples over time, and the characteristic rheological values for multiple C. albicans mutant strains.

Supplementary Material

You do not currently have access to this content.