The nonlinear response to the uniaxial extension of a series of isotactic polypropylene (iPP) ionomers is studied by melt rheology and ex situ small and wide-angle x-ray scattering measurements. These ionomers bear iPP backbones decorated with pendant aluminum carboxylate groups. Minuscule amounts of ion groups (<0.1 mol. %) are sufficient to produce remarkably high extensional strain hardening ratios of up to 200 and maximum stretch ratios (before breakage) of up to 50. Small and wide-angle scattering measurements from an iPP ionomer sample quenched during an extensional flow reveal monotonic correlations between Hencky strain, crystallinity, and crystal alignment. These results indicate a direct correlation between extensional stress and the chain alignment in the ionomer melt. Intriguingly, the ion clusters in the ionomer show no alignment induced by extensional deformation, suggesting undetermined rearrangements involving cluster dissociation and reassociation that occur during the flow. Slow stress relaxation, after flow cessation, was measured in the ionomers, in sharp contrast to much faster relaxation typically observed in the iPP homopolymer. Stress relaxation is not concomitant with a decrease in crystal alignment, which indicates that chain recoiling is not the stress relaxation mechanism in iPP ionomers.

1.
Eisenberg
,
A.
, and
J.
Kim
,
Introduction to Ionomers
(
Wiley
,
New York
,
1998
).
2.
Register
,
R. A.
, and
R. K.
Prud’homme
,
Melt Rheology
(
Springer Netherlands
,
Dordrecht
,
1997
), p.
208
.
3.
Tant
,
M. R.
,
K. A.
Mauritz
, and
G. L.
Wilkes
,
Ionomers: Synthesis, Structure, Properties, and Applications
(
Blackie Academic & Professional, London
,
New York
,
1997
).
4.
Zhang
,
L.
,
N. R.
Brostowitz
,
K. A.
Cavicchi
, and
R. A.
Weiss
, “
Perspective: Ionomer research and applications
,”
Macromol. React. Eng.
8
,
81
99
(
2014
).
5.
Tadmor
,
Z.
, and
C. G.
Gogos
,
Principles of Polymer Processing
(
Wiley-Interscience
,
Hoboken
,
NJ
,
2006
).
6.
Karian
,
H. G.
,
Handbook of Polypropylene and Polypropylene Composites
(
Marcel Dekker
,
New York
,
2003
), p.
67
.
7.
Maddah
,
H. A.
, “
Polypropylene as a promising plastic: A review
,”
Am. J. Polym. Sci.
6
,
1
11
(
2016
).
8.
He
,
C.
,
S.
Costeux
,
P.
Wood-Adams
, and
J. M.
Dealy
, “
Molecular structure of high melt strength polypropylene and its application to polymer design
,”
Polymer
44
,
7181
7188
(
2003
).
9.
Auhl
,
D.
,
J.
Stange
,
H.
Münstedt
,
B.
Krause
,
D.
Voigt
,
A.
Lederer
,
U.
Lappan
, and
K.
Lunkwitz
, “
Long-chain branched polypropylenes by electron beam irradiation and their rheological properties
,”
Macromolecules
37
,
9465
9472
(
2004
).
10.
Gotsis
,
A. D.
,
B. L. F.
Zeevenhoven
, and
C.
Tsenoglou
, “
Effect of long branches on the rheology of polypropylene
,”
J. Rheol.
48
,
895
914
(
2004
).
11.
Nam
,
G. J.
,
J. H.
Yoo
, and
J. W.
Lee
, “
Effect of long-chain branches of polypropylene on rheological properties and foam-extrusion performances
,”
J. Appl. Polym. Sci.
96
,
1793
1800
(
2005
).
12.
Gotsis
,
A. D.
,
B. L. F.
Zeevenhoven
, and
A. H.
Hogt
, “
The effect of long chain branching on the processability of polypropylene in thermoforming
,”
Polym. Eng. Sci.
44
,
973
982
(
2004
).
13.
Li
,
S.
,
M.
Xiao
,
D.
Wei
,
H.
Xiao
,
F.
Hu
, and
A.
Zheng
, “
The melt grafting preparation and rheological characterization of long chain branching polypropylene
,”
Polymer
50
,
6121
6128
(
2009
).
14.
Lagendijk
,
R. P.
,
A. H.
Hogt
,
A.
Buijtenhuijs
, and
A. D.
Gotsis
, “
Peroxydicarbonate modification of polypropylene and extensional flow properties
,”
Polymer
42
,
10035
10043
(
2001
).
15.
El Mabrouk
,
K.
,
J. S.
Parent
,
B. I.
Chaudhary
, and
R.
Cong
, “
Chemical modification of PP architecture: Strategies for introducing long-chain branching
,”
Polymer
50
,
5390
5397
(
2009
).
16.
Wang
,
X.-D.
,
Y.-X.
Zhang
,
B.-G.
Liu
,
Z.-J.
Du
, and
H.-Q.
Li
, “
Crystallization behavior and crystal morphology of linear/long chain branching polypropylene blends
,”
Polym. J.
40
,
450
454
(
2008
).
17.
Weiss
,
R. A.
,
J. J.
Fitzgerald
, and
D.
Kim
, “
Viscoelastic behavior of lightly sulfonated polystyrene ionomers
,”
Macromolecules
24
,
1071
1076
(
1991
).
18.
Matsuura
,
H.
, “
Secondary stress relaxation mechanism in ion-containing polymers I. A new analytical method
,”
Polym. J.
18
,
1027
1035
(
1986
).
19.
Connelly
,
R. W.
,
R. C.
McConkey
,
J. M.
Noonan
, and
G. H.
Pearson
, “
Melt rheology of ion-containing polymers. I. Effect of ionic content in a model polyesterionomer
,”
J. Polym. Sci.: Polym. Phys. Ed.
20
,
259
268
(
1982
).
20.
Takahashi
,
T.
,
J.
Watanabe
,
K.
Minagawa
, and
K.
Koyama
, “
Effect of ionic interaction on elongational viscosity of ethylene-based ionomer melts
,”
Polymer
35
,
5722
5728
(
1994
).
21.
Kurian
,
T.
,
M.
Nishio
,
A.
Nishioka
,
T.
Takahashi
, and
K.
Koyama
, “
Dynamic melt rheological properties of ionomers based on poly(ethylene-co-acrylic acid) and poly(ethylene-co-methacrylic acid)
,”
Int. J. Polym. Mater. Polym. Biomater.
56
,
135
145
(
2007
).
22.
Weiss
,
R. A.
, and
H.
Zhao
, “
Rheological behavior of oligomeric ionomers
,”
J. Rheol.
53
,
191
213
(
2009
).
23.
Li
,
Y.
,
Z.
Yao
,
Z.
Chen
,
S.
Qiu
,
C.
Zeng
, and
K.
Cao
, “
High melt strength polypropylene by ionic modification: Preparation, rheological properties and foaming behaviors
,”
Polymer
70
,
207
214
(
2015
).
24.
Shabbir
,
A.
,
Q.
Huang
,
G. P.
Baeza
,
D.
Vlassopoulos
,
Q.
Chen
,
R. H.
Colby
,
N. J.
Alvarez
, and
O.
Hassager
, “
Nonlinear shear and uniaxial extensional rheology of polyether-ester-sulfonate copolymer ionomer melts
,”
J. Rheol.
61
,
1279
1289
(
2017
).
25.
Tomkovic
,
T.
, and
S. G.
Hatzikiriakos
, “
Nonlinear rheology of poly(ethylene-co-methacrylic acid) ionomers
,”
J. Rheol.
62
,
1319
1329
(
2018
).
26.
Wang
,
W.
,
J.
Madsen
,
N.
Genina
,
O.
Hassager
,
A. L.
Skov
, and
Q.
Huang
, “
Toward a design for flowable and extensible ionomers: An example of diamine-neutralized entangled poly(styrene-co-4-vinylbenzoic acid) ionomer melts
,”
Macromolecules
54
,
2306
2315
(
2021
).
27.
Rousseaux
,
D. D. J.
,
X.
Drooghaag
,
M.
Sclavons
,
P.
Godard
,
V.
Carlier
, and
J.
Marchand-Brynaert
, “
Polypropylene ionic thermoplastic elastomers: Synthesis and properties
,”
Polym. Degrad. Stab.
95
,
363
368
(
2010
).
28.
Wu
,
M.-H.
,
C.-C.
Wang
, and
C.-Y.
Chen
, “
Preparation of high melt strength polypropylene by addition of an ionically modified polypropylene
,”
Polymer
202
,
122743
(
2020
).
29.
López-Barrón
,
C. R.
,
N. S.
Lambic
,
J. A.
Throckmorton
,
J. J.
Schaefer
,
A.
Smith
,
F. N.
Raushel
, and
T.-P.
Lin
, “
One-pot synthesis of high-melt-strength isotactic polypropylene ionomers
,”
Macromolecules
55
,
284
296
(
2022
).
30.
Heinrich
,
M.
,
W.
Pyckhout-Hintzen
,
J.
Allgaier
,
D.
Richter
,
E.
Straube
,
T. C. B.
McLeish
,
A.
Wiedenmann
,
R. J.
Blackwell
, and
D. J.
Read
, “
Small-angle neutron scattering study of the relaxation of a melt of polybutadiene H-polymers following a large step strain
,”
Macromolecules
37
,
5054
5064
(
2004
).
31.
Hassager
,
O.
,
K.
Mortensen
,
A.
Bach
,
K.
Almdal
,
H. K.
Rasmussen
, and
W.
Pyckhout-Hintzen
, “
Stress and neutron scattering measurements on linear polymer melts undergoing steady elongational flow
,”
Rheol. Acta
51
,
385
394
(
2012
).
32.
Ruocco
,
N.
,
D.
Auhl
,
C.
Bailly
,
P.
Lindner
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
,
L. G.
Leal
,
N.
Hadjichristidis
, and
D.
Richter
, “
Branch point withdrawal in elongational startup flow by time-resolved small angle neutron scattering
,”
Macromolecules
49
,
4330
4339
(
2016
).
33.
Pyckhout-Hintzen
,
W.
,
A.
Wischnewski
, and
D.
Richter
, “
Mixtures of polymer architectures: Probing the structure and dynamics with neutron scattering
,”
Polymer
105
,
378
392
(
2016
).
34.
López-Barrón
,
C. R.
,
W. R.
Burghardt
, and
M. S.
Kweon
, “
Local and global stretching of polymer chains during startup of extensional flow
,”
ACS Macro Lett.
9
,
26
31
(
2020
).
35.
Schrauwen
,
B. A. G.
,
L. C. A.
Breemen
,
A. B.
Spoelstra
,
L. E.
Govaert
,
G. W. M.
Peters
, and
H. E. H.
Meijer
, “
Structure, deformation, and failure of flow-oriented semicrystalline polymers
,”
Macromolecules
37
,
8618
8633
(
2004
).
36.
Seki
,
M.
,
D. W.
Thurman
,
J. P.
Oberhauser
, and
J. A.
Kornfield
, “
Shear-mediated crystallization of isotactic polypropylene: The role of long chain−long chain overlap
,”
Macromolecules
35
,
2583
2594
(
2002
).
37.
Hsiao
,
B. S.
,
L.
Yang
,
R. H.
Somani
,
C. A.
Avila-Orta
, and
L.
Zhu
, “
Unexpected shish-kebab structure in a sheared polyethylene melt
,”
Phys. Rev. Lett.
94
,
117802
(
2005
).
38.
Yan
,
T.
,
B.
Zhao
,
Y.
Cong
,
Y.
Fang
,
S.
Cheng
,
L.
Li
,
G.
Pan
,
Z.
Wang
,
X.
Li
, and
F.
Bian
, “
Critical strain for shish-kebab formation
,”
Macromolecules
43
,
602
605
(
2010
).
39.
Balzano
,
L.
,
Z.
Ma
,
D.
Cavallo
,
T. B.
van Erp
,
L.
Fernandez-Ballester
, and
G. W. M.
Peters
, “
Molecular aspects of the formation of shish-kebab in isotactic polypropylene
,”
Macromolecules
49
,
3799
3809
(
2016
).
40.
Wingstrand
,
S. L.
,
B.
Shen
,
J. A.
Kornfield
,
K.
Mortensen
,
D.
Parisi
,
D.
Vlassopoulos
, and
O.
Hassager
, “
Rheological link between polymer melts with a high molecular weight tail and enhanced formation of shish-kebabs
,”
ACS Macro Lett.
6
,
1268
1273
(
2017
).
41.
Wingstrand
,
S. L.
,
M.
van Drongelen
,
K.
Mortensen
,
R. S.
Graham
,
Q.
Huang
, and
O.
Hassager
, “
Influence of extensional stress overshoot on crystallization of LDPE
,”
Macromolecules
50
,
1134
1140
(
2017
).
42.
Schrauwen
,
B. A. G.
,
L. C. A.
Breemen
,
A. B.
Spoelstra
,
L. E.
Govaert
,
G. W. M.
Peters
, and
H. E. H.
Meijer
, “
Structure, deformation, and failure of flow-oriented semicrystalline polymers
,”
Macromolecules
37
,
8618
8633
(
2004
).
43.
Mi
,
D.
,
C.
Xia
,
M.
Jin
,
F.
Wang
,
K.
Shen
, and
J.
Zhang
, “
Quantification of the effect of shish-kebab structure on the mechanical properties of polypropylene samples by controlling shear layer thickness
,”
Macromolecules
49
,
4571
4578
(
2016
).
44.
Mi
,
D.
,
F.
Hou
,
M.
Zhou
, and
J.
Zhang
, “
Improving the mechanical and thermal properties of shish-kebab via partial melting and re-crystallization
,”
Eur. Polym. J.
101
,
1
11
(
2018
).
45.
Janeschitz-Kriegl
,
H.
,
E.
Ratajski
, and
M.
Stadlbauer
, “
Flow as an effective promotor of nucleation in polymer melts: A quantitative evaluation
,”
Rheol. Acta
42
,
355
364
(
2003
).
46.
Wang
,
Z.
,
Z.
Ma
, and
L.
Li
, “
Flow-induced crystallization of polymers: Molecular and thermodynamic considerations
,”
Macromolecules
49
,
1505
1517
(
2016
).
47.
Ad Hoc Committee on Official Nomenclature and Symbols
, “
Official symbols and nomenclature of the Society of Rheology
,”
J. Rheol.
57
,
1047
1055
(
2013
).
48.
Macosko
,
C. W.
,
Rheology: Principles, Measurements, and Applications
(
VCH
,
New York
,
1994
), p.
xviii
, 550 p.
49.
Chen
,
Q.
,
Z.
Zhang
, and
R. H.
Colby
, “
Viscoelasticity of entangled random polystyrene ionomers
,”
J. Rheol.
60
,
1031
1040
(
2016
).
50.
Colby
,
R. H.
,
L. J.
Fetters
, and
W. W.
Graessley
, “
The melt viscosity-molecular weight relationship for linear polymers
,”
Macromolecules
20
,
2226
2237
(
1987
).
51.
Auhl
,
D.
,
P.
Chambon
,
T. C. B.
McLeish
, and
D. J.
Read
, “
Elongational flow of blends of long and short polymers: Effective stretch relaxation time
,”
Phys. Rev. Lett.
103
,
136001
(
2009
).
52.
Zatloukal
,
M.
, and
J.
Drabek
, “
Reduction of monomeric friction coefficient for linear isotactic polypropylene melts in very fast uniaxial extensional flow
,”
Phys. Fluids
33
,
051703
(
2021
).
53.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
), p.
xi
, 440 p.
54.
Eckstein
,
A.
,
J.
Suhm
,
C.
Friedrich
,
R.-D.
Maier
,
J.
Sassmannshausen
,
M.
Bochmann
, and
R.
Mülhaupt
, “
Determination of plateau moduli and entanglement molecular weights of isotactic, syndiotactic, and atactic polypropylenes synthesized with metallocene catalysts
,”
Macromolecules
31
,
1335
1340
(
1998
).
55.
Sakurai
,
S.
, “
Recent developments in polymer applications of synchrotron small-angle x-ray scattering
,”
Polym. Int.
66
,
237
249
(
2017
).
56.
Bharati
,
A.
,
S. D.
Hudson
, and
K. M.
Weigandt
, “
Poiseuille and extensional flow small-angle scattering for developing structure–rheology relationships in soft matter systems
,”
Curr. Opin. Colloid Interface Sci.
42
,
137
146
(
2019
).
57.
Vinogradov
,
G. V.
,
A. Y.
Malkin
,
V. V.
Volosevitch
,
V. P.
Shatalov
, and
V. P.
Yudin
, “
Flow, high-elastic (recoverable) deformation, and rupture of uncured high molecular weight linear polymers in uniaxial extension
,”
J. Polym. Sci.: Polym. Phys. Ed.
13
,
1721
1735
(
1975
).
58.
Schultz
,
J. M.
,
J. S.
Lin
,
R. W.
Hendricks
,
J.
Petermann
, and
R. M.
Gohil
, “
Annealing of polypropylene films crystallized from a highly extended melt
,”
J. Polym. Sci.: Polym. Phys. Ed.
19
,
609
620
(
1981
).
59.
Petermann
,
J.
,
R. M.
Gohil
,
J. M.
Schultz
,
R. W.
Hendricks
, and
J. S.
Lin
, “
The kinetics of defect clustering in fibrillar polypropylene crystals
,”
J. Polym. Sci.: Polym. Phys. Ed.
20
,
523
534
(
1982
).
60.
Alexander
,
L. E.
,
X-ray Diffraction Methods in Polymer Science
(
Wiley-Interscience
,
New York
,
1969
).
61.
Zhu
,
P.-W.
, and
G.
Edward
, “
Orientational distribution of parent–daughter structure of isotactic polypropylene: A study using simultaneous synchrotron WAXS and SAXS
,”
J. Mater. Sci.
43
,
6459
6467
(
2008
).
62.
Yarusso
,
D. J.
, and
S. L.
Cooper
, “
Microstructure of ionomers: Interpretation of small-angle x-ray scattering data
,”
Macromolecules
16
,
1871
1880
(
1983
).
63.
Register
,
R. A.
, and
S. L.
Cooper
, “
Anomalous small-angle x-ray scattering from nickel-neutralized ionomers. 2.: semicrystalline polymer matrixes
,”
Macromolecules
23
,
318
323
(
1990
).
64.
Grady
,
B. P.
, “
Review and critical analysis of the morphology of random ionomers across many length scales
,”
Polym. Eng. Sci.
48
,
1029
1051
(
2008
).
65.
Middleton
,
L. R.
, and
K. I.
Winey
, “
Nanoscale aggregation in acid- and ion-containing polymers
,”
Annu. Rev. Chem. Biomol. Eng.
8
,
499
523
(
2017
).
You do not currently have access to this content.