We examine linear and nonlinear shear and extensional rheological properties using a “micelle-slip-spring model” [T. Sato et al., J. Rheol. 64, 1045–1061 (2020)] that incorporates breakage and rejoining events into the slip-spring model originally developed by Likhtman [Macromolecules 38, 6128–6139 (2005)] for unbreakable polymers. We here employ the Fraenkel potential for main chain springs and slip-springs to address the effect of finite extensibility. Moreover, to improve extensional properties under a strong extensional flow, stress-induced micelle breakage (SIMB) is incorporated into the micelle-slip-spring model. Thus, this model is the first model that includes the entanglement constraint, Rouse modes, finite extensibility, breakage and rejoining events, and stress-induced micelle breakage. Computational expense currently limits the model to micellar solutions with moderate numbers of entanglements (7), but for such solutions, nearly quantitative agreement is attained for the start-up of the shearing flow. The model in the extensional flow cannot yet be tested owing to the lack of data for this entanglement level. The transient and steady shear properties predicted by the micelle-slip-spring model for a moderate shear rate region without significant chain stretch are fit well by the Giesekus model but not by the Phan–Thien/Tanner (PTT) model, which is consistent with the ability of the Giesekus model to match experimental shear data. The extensional viscosities obtained by the micelle-slip-spring model with SIMB show thickening followed by thinning, which is in qualitative agreement with experimental trends. Additionally, the extensional rheological properties of the micelle-slip-spring model with or without SIMB are poorly predicted by both the Giesekus and the PTT models using a single nonlinear parameter. Thus, future work should seek a constitutive model able to capture the behavior of the slip-spring model in shear and extensional flows and so provide an accurate, efficient model of micellar solution rheology.

1.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University
,
New York
,
1999
).
2.
Shikata
,
T.
,
H.
Hirata
, and
T.
Kotaka
, “
Micelle formation of detergent molecules in aqueous media: Viscoelastic properties of aqueous cetyltrimethylammonium bromide solutions
,”
Langmuir
3
,
1081
1086
(
1987
).
3.
Berret
,
J. F.
,
J.
Appell
, and
G.
Porte
, “
Linear rheology of entangled wormlike micelles
,”
Langmuir
9
,
2851
2854
(
1993
).
4.
Soltero
,
J. F. A.
,
J. E.
Puig
, and
O.
Manero
, “
Rheology of the cetyltrimethylammonium tosilate-water system. 2. Linear viscoelastic regime
,”
Langmuir
12
,
2654
2662
(
1996
).
5.
Shikata
,
T.
,
H.
Hirata
,
E.
Takatori
, and
K.
Osaki
, “
Nonlinear viscoelastic behavior of aqueous detergent solutions
,”
J. Non-Newtonian Fluid Mech.
28
,
171
182
(
1988
).
6.
Rehage
,
H.
, and
H.
Hoffmann
, “
Viscoelastic surfactant solutions: Model systems for rheological research
,”
Mol. Phys.
74
,
933
973
(
1991
).
7.
Gaudino
,
D.
,
S.
Costanzo
,
G.
Ianniruberto
,
N.
Grizzuti
, and
R.
Pasquino
, “
Linear wormlike micelles behave similarly to entangled linear polymers in fast shear flows
,”
J. Rheol.
64
,
879
888
(
2020
).
8.
Yesilata
,
B.
,
C.
Clasen
, and
G. H.
McKinley
, “
Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions
,”
J. Non-Newtonian Fluid Mech.
133
,
73
90
(
2006
).
9.
Gurnon
,
A. K.
, and
N. J.
Wagner
, “
Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles
,”
J. Rheol.
56
,
333
351
(
2012
).
10.
Helgeson
,
M. E.
,
M. D.
Reichert
,
Y. T.
Hu
, and
N. J.
Wagner
, “
Relating shear banding, structure, and phase behavior in wormlike micellar solutions
,”
Soft Matter
5
,
3858
3869
(
2009
).
11.
Helgeson
,
M. E.
,
P. A.
Vasquez
,
E. W.
Kaler
, and
N. J.
Wagner
, “
Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition
,”
J. Rheol.
53
,
727
756
(
2009
).
12.
Inoue
,
T.
,
Y.
Inoue
, and
H.
Watanabe
, “
Nonlinear rheology of CTAB/NaSal aqueous solutions: Finite extensibility of a network of wormlike micelles
,”
Langmuir
21
,
1201
1208
(
2005
).
13.
Rothstein
,
J. P.
, “
Transient extensional rheology of wormlike micelle solutions
,”
J. Rheol.
47
,
1227
1247
(
2003
).
14.
Bhardwaj
,
A.
,
E.
Miller
, and
J. P.
Rothstein
, “
Filament stretching and capillary breakup extensional rheometry measurements of viscoelastic wormlike micelle solutions
,”
J. Rheol.
51
,
693
719
(
2007
).
15.
Prud’homme
,
R. K.
, and
G. G.
Warr
, “
Elongational flow of solutions of rodlike micelles
,”
Langmuir
10
,
3419
3426
(
1994
).
16.
Hu
,
Y.
,
S. Q.
Wang
, and
A. M.
Jamieson
, “
Elongational flow behavior of cetyltrimethylammonium bromide/sodium salicylate surfactant solutions
,”
J. Phys. Chem.
98
,
8555
8559
(
1994
).
17.
Walker
,
L. M.
,
P.
Moldenaers
, and
J.-F.
Berret
, “
Macroscopic response of wormlike micelles to elongational flow
,”
Langmuir
12
,
6309
6314
(
1996
).
18.
Shikata
,
T.
,
S. J.
Dahman
, and
D. S.
Pearson
, “
Rheo-optical behavior of wormlike micelles
,”
Langmuir
10
,
3470
3476
(
1994
).
19.
Schubert
,
B. A.
,
E. W.
Kaler
, and
N. J.
Wagner
, “
The microstructure and rheology of mixed cationic/anionic wormlike micelles
,”
Langmuir
19
,
4079
4089
(
2003
).
20.
Oelschlaeger
,
C.
,
M.
Schopferer
,
F.
Scheffold
, and
N.
Willenbacher
, “
Linear-to-branched micelles transition: A rheometry and diffusing wave spectroscopy (DWS) study
,”
Langmuir
25
,
716
723
(
2009
).
21.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
22.
Olmsted
,
P. D.
, “
Perspectives on shear banding in complex fluids
,”
Rheol. Acta
47
,
283
300
(
2008
).
23.
Lerouge
,
S.
, and
J. F.
Berret
, “Shear-induced transitions and instabilities in surfactant wormlike micelles,” in Polymer Characterization. Advances in Polymer Science, edited by K. Dusek and J. F. Joanny (Springer, Berlin, 2010), Vol. 230.
24.
Rothstein
,
J. P.
, and
H.
Mohammadigoushki
, “
Complex flows of viscoelastic wormlike micelle solutions
,”
J. Non-Newtonian Fluid Mech.
285
,
104382
(
2020
).
25.
Cates
,
M. E.
, “
Reptation of living polymers: Dynamics of entangled polymers in the presence of reversible chain-scission reactions
,”
Macromolecules
20
,
2289
2296
(
1987
).
26.
Turner
,
M. S.
, and
M. E.
Cates
, “
Linear viscoelasticity of wormlike micelles: A comparison of micellar reaction kinetics
,”
J. Phys. II Fr.
2
,
503
519
(
1992
).
27.
Zou
,
W.
, and
R. G.
Larson
, “
A mesoscopic simulation method for predicting the rheology of semi-dilute wormlike micellar solutions
,”
J. Rheol.
58
,
681
721
(
2014
).
28.
Zou
,
W.
,
X.
Tang
,
M.
Weaver
,
P.
Koenig
, and
R. G.
Larson
, “
Determination of characteristic lengths and times for wormlike micelle solutions from rheology using a mesoscopic simulation method
,”
J. Rheol.
59
,
903
934
(
2015
).
29.
Zou
,
W.
,
G.
Tan
,
H.
Jiang
,
K.
Vogtt
,
M.
Weaver
,
P.
Koenig
,
G.
Beaucage
, and
R. G.
Larson
, “
From well-entangled to partially-entangled wormlike micelles
,”
Soft Matter
15
,
642
655
(
2019
).
30.
Tan
,
G.
,
W.
Zou
,
M.
Weaver
, and
R. G.
Larson
, “
Determining threadlike micelle lengths from rheometry
,”
J. Rheol.
65
,
59
71
(
2021
).
31.
Vasquez
,
P. A.
,
G. H.
McKinley
, and
L. P.
Cook
, “
A network scission model for wormlike micellar solutions. I. Model formulation and viscometric flow predictions
,”
J. Non-Newtonian Fluid Mech.
144
,
122
139
(
2007
).
32.
Pipe
,
C. J.
,
N. J.
Kim
,
P. A.
Vasquez
,
L. P.
Cook
, and
G. H.
McKinley
, “
Wormlike micellar solutions: II. Comparison between experimental data and scission model predictions
,”
J. Rheol.
54
,
881
913
(
2010
).
33.
Peterson
,
J. D.
, and
M. E.
Cates
, “
A full-chain tube-based constitutive model for living linear polymers
,”
J. Rheol.
64
,
1465
1496
(
2020
).
34.
Peterson
,
J. D.
, and
L. G.
Leal
, “
Predictions for flow-induced scission in well-entangled living polymers: The ‘living Rolie-Poly’ model
,”
J. Rheol.
65
,
959
982
(
2021
).
35.
Peterson
,
J. D.
, and
M. E.
Cates
, “
Constitutive models for well-entangled living polymers beyond the fast-breaking limit
,”
J. Rheol.
65
,
633
662
(
2021
).
36.
Sato
,
T.
,
S.
Moghadam
,
G.
Tan
, and
R. G.
Larson
, “
A slip-spring simulation model for predicting linear and nonlinear rheology of entangled wormlike micellar solutions
,”
J. Rheol.
64
,
1045
1061
(
2020
).
37.
Likhtman
,
A. E.
, “
Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-echo, rheology, and diffusion
,”
Macromolecules
38
,
6128
6139
(
2005
).
38.
Masubuchi
,
Y.
, “
Simulating the flow of entangled polymers
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
11
33
(
2014
).
39.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
).
40.
Uneyama
,
T.
, and
Y.
Masubuchi
, “
Multi-chain slip-spring model for entangled polymer dynamics
,”
J. Chem. Phys.
137
,
154902
(
2012
).
41.
Zhu
,
J.
,
A. E.
Likhtman
, and
Z.
Wang
, “
Arm retraction dynamics of entangled star polymers: A forward flux sampling method study
,”
J. Chem. Phys.
147
,
044907
(
2017
).
42.
Hu
,
Y. T.
, and
A.
Lips
, “
Kinetics and mechanism of shear banding in an entangled micellar solution
,”
J. Rheol.
49
,
1001
1027
(
2005
).
43.
Fraenkel
,
G. K.
, “
Visco-elastic effect in solutions of simple particles
,”
J. Chem. Phys.
20
,
642
647
(
1952
).
44.
Ramírez
,
J.
,
S. K.
Sukumaran
, and
A. E.
Likhtman
, “
Significance of cross correlations in the stress relaxation of polymer melts
,”
J. Chem. Phys.
126
,
244904
(
2007
).
45.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000426 for further results obtained from the slip-spring simulations.
46.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
New York
,
1986
).
47.
Mandal
,
T.
, and
R. G.
Larson
, “
Stretch and breakage of wormlike micelles under uniaxial strain: A simulation study and comparison with experimental results
,”
Langmuir
34
,
12600
12608
(
2018
).
48.
Likhtman
,
A. E.
, and
T. C. B.
McLeish
, “
Quantitative theory for linear dynamics of linear entangled polymers
,”
Macromolecules
35
,
6332
6343
(
2002
).
49.
Ramírez
,
J.
,
S. K.
Sukumaran
, and
A. E.
Likhtman
, “
Hierarchical modeling of entangled polymers
,”
Macromol. Symp.
252
,
119
129
(
2007
).
50.
Lin
,
Y.-H.
, and
A. K.
Das
, “
Monte Carlo simulations of stress relaxation of entanglement-free Fraenkel chains. I. Linear polymer viscoelasticity
,”
J. Chem. Phys.
126
,
074902
(
2007
).
51.
Ianniruberto
,
G.
,
A.
Brasiello
, and
G.
Marrucci
, “
Modeling unentangled polystyrene melts in fast elongational flows
,”
Macromolecules
52
,
4610
4616
(
2019
).
52.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
Origin of shear thinning in unentangled polystyrene melts
,”
Macromolecules
53
,
1338
1345
(
2020
).
53.
Dalal
,
I. S.
,
N.
Hoda
, and
R. G.
Larson
, “
Multiple regimes of deformation in shearing flow of isolated polymers
,”
J. Rheol.
56
,
305
332
(
2012
).
54.
Larson
,
R. G.
,
Constitutive Equations for Polymer Melts and Solutions, Butterworths Series in Chemical Engineering
(
Butterworth
,
Sydney
,
1988
).
55.
Khan
,
S. A.
, and
R. G.
Larson
, “
Comparison of simple constitutive equations for polymer melts in shear and biaxial and uniaxial extensions
,”
J. Rheol.
31
,
207
234
(
1987
).
56.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
, Dynamics of Polymeric Liquids, Fluid Mechanics Vol. 1 (John Wiley & Sons, New York, 1987).
57.
Phan Thien
,
N.
, and
R. I.
Tanner
, “
A new constitutive equation derived from network theory
,”
J. Non-Newtonian Fluid Mech.
2
,
353
365
(
1977
).
58.
Syrakos
,
A.
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Theoretical study of the flow in a fluid damper containing high viscosity silicone oil: Effects of shear-thinning and viscoelasticity
,”
Phys. Fluids
30
,
030708
(
2018
).
59.
Ramírez
,
J.
,
S. K.
Sukumaran
,
B.
Vorselaars
, and
A. E.
Likhtman
, “
Efficient on the fly calculation of time correlation functions in computer simulations
,”
J. Chem. Phys.
133
,
154103
(
2010
).
60.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
(
John Wiley & Sons
,
New York
,
1980
).
61.
Xu
,
J.
,
Y.
Tseng
, and
D.
Wirtz
, “
Strain hardening of actin filament networks: Regulation by the dynamic cross-linking protein α-actinin
,”
J. Biol. Chem.
275
,
35886
35892
(
2000
).
62.
Lutz-Bueno
,
V.
,
R.
Pasquino
,
M.
Liebi
,
J.
Kohlbrecher
, and
P.
Fischer
, “
Viscoelasticity enhancement of surfactant solutions depends on molecular conformation: Influence of surfactant headgroup structure and its counterion
,”
Langmuir
32
,
4239
4250
(
2016
).
63.
Moghadam
,
S.
,
I. S.
Dalal
, and
R. G.
Larson
, “
Slip-spring and kink dynamics models for fast extensional flow of entangled polymeric fluids
,”
Polymers
11
,
465
(
2019
).
64.
Brown
,
E. F.
,
W. R.
Burghardt
, and
D. C.
Venerus
, “
Tests of the Lodge-Meissner relation in anomalous nonlinear step strain of an entangled wormlike micelle solution
,”
Langmuir
13
,
3902
3904
(
1997
).
65.
Adams
,
A. A.
,
M. J.
Solomon
,
R. G.
Larson
, and
X.
Xia
, “
Concentration, salt and temperature dependence of strain hardening of step shear in CTAB/NaSal surfactant solutions
,”
J. Rheol.
61
,
967
977
(
2017
).
66.
Sato
,
T.
,
K.
Harada
, and
T.
Taniguchi
, “
Multiscale simulations of flows of a well-entangled polymer melt in a contraction-expansion channel
,”
Macromolecules
52
,
547
564
(
2019
).
67.
Seryo
,
N.
,
T.
Sato
,
J. J.
Molina
, and
T.
Taniguchi
, “
Learning the constitutive relation of polymeric flows with memory
,”
Phys. Rev. Res.
2
,
033107
(
2020
).

Supplementary Material

You do not currently have access to this content.