Shear-induced pair interactions between viscous drops suspended in a viscoelastic matrix are numerically investigated examining the effects of elasticity and drop deformability on their post-collision trajectory. Two different trajectory types are identified depending on the Weissenberg number Wi and capillary number Ca. Drops suspended in a Newtonian matrix (Wi =0.0) show a passing trajectory where drops slide past each other and separate in the stream-wise direction. However, when increasing the Weissenberg number above a critical value, a tumbling/doublet trajectory is observed where two drops rotate around the midpoint of the line joining their centers, as was also seen previously for rigid particles. The tumbling trajectory is explained by investigating the flow around a single drop in shear. Elasticity generates a larger region of spiraling streamlines around a drop, which, during a pair interaction, traps the second drop giving rise to the tumbling pair. Decreasing deformability (lower Ca) and increasing viscoelasticity (higher Wi) favor a tumbling trajectory. With simulations sweeping the parameter space, we obtain a phase plot of the two different trajectories as functions of Ca and Wi. Treating the tension along the curved streamlines due to the non-zero first normal stress difference in the viscoelastic medium as an enhancement to the interfacial tension, we have developed an approximate force balance model for the zone of spiraling streamlines. It qualitatively captures the observed scaling of the critical Ca and Wi values at the phase boundary. The effects of unequal size, initial configuration, and non-unity viscosity ratio are briefly investigated.

1.
Barbati
,
A. C.
,
J.
Desroches
,
A.
Robisson
, and
G. H.
McKinley
, “
Complex fluids and hydraulic fracturing
,”
Ann. Rev. Chem. Biomol. Eng.
7
,
415
453
(
2016
).
2.
Tung
,
C.-K.
,
C.
Lin
,
B.
Harvey
,
A. G.
Fiore
,
F.
Ardon
,
M.
Wu
, and
S. S.
Suarez
, “
Fluid viscoelasticity promotes collective swimming of sperm
,”
Sci. Rep.
7
,
1
9
(
2017
).
3.
Saintillan
,
D.
, “
Rheology of active fluids
,”
Annu. Rev. Fluid Mech.
50
,
563
592
(
2018
).
4.
Bazaz
,
S. R.
,
A.
Mashhadian
,
A.
Ehsani
,
S. C.
Saha
,
T.
Krüger
, and
M. E.
Warkiani
, “
Computational inertial microfluidics: A review
,”
Lab Chip
20
,
1023
1048
(
2020
).
5.
Zhou
,
J.
, and
I.
Papautsky
, “
Viscoelastic microfluidics: Progress and challenges
,”
Microsyst. Nanoeng.
6
,
1
24
(
2020
).
6.
Zenit
,
R.
, and
J.
Feng
, “
Hydrodynamic interactions among bubbles, drops, and particles in non-Newtonian liquids
,”
Annu. Rev. Fluid Mech.
50
,
505
534
(
2018
).
7.
Shaqfeh
,
E. S.
, “
On the rheology of particle suspensions in viscoelastic fluids
,”
AIChE J.
65
,
e16575
(
2019
).
8.
Dai
,
S.
, and
R. I.
Tanner
, “
Rheology of semi-dilute suspensions with a viscoelastic matrix
,”
Rheol. Acta
59
,
477
486
(
2020
).
9.
Morris
,
J. F.
, “
Toward a fluid mechanics of suspensions
,”
Phys. Rev. Fluids
5
,
110519
(
2020
).
10.
Li
,
X. Y.
, and
K.
Sarkar
, “
Effects of inertia on the rheology of a dilute emulsion of drops in shear
,”
J. Rheol.
49
,
1377
1394
(
2005
).
11.
Li
,
X. Y.
, and
K.
Sarkar
, “
Numerical investigation of the rheology of a dilute emulsion of drops in an oscillating extensional flow
,”
J. Non-Newtonian Fluid Mech.
128
,
71
82
(
2005
).
12.
D’Avino
,
G.
, and
P. L.
Maffettone
, “
Particle dynamics in viscoelastic liquids
,”
J. Non-Newtonian Fluid Mech.
215
,
80
104
(
2015
).
13.
Guido
,
S.
, and
M.
Simeone
, “
Binary collision of drops in simple shear flow by computer-assisted video optical microscopy
,”
J. Fluid Mech.
357
,
1
20
(
1998
).
14.
Malipeddi
,
A. R.
, and
K.
Sarkar
, “
Collective diffusivity in a sheared viscous emulsion: Effects of viscosity ratio
,”
Phys. Rev. Fluids
4
,
093603
(
2019
).
15.
Malipeddi
,
A. R.
, and
K.
Sarkar
, “
Shear-induced collective diffusivity down a concentration gradient in a viscous emulsion of drops
,”
J. Fluid Mech.
868
,
5
25
(
2019
).
16.
Malipeddi
,
A. R.
, and
K.
Sarkar
, “
Shear-induced gradient diffusivity of a red blood cell suspension: Effects of cell dynamics from tumbling to tank-treading
,”
Soft Matter
17
,
8523
8535
(
2021
).
17.
Bretherton
,
F. P.
, “
The motion of rigid particles in a shear flow at low Reynolds number
,”
J. Fluid Mech.
14
,
284
304
(
1962
).
18.
Da Cunha
,
F.
, and
E.
Hinch
, “
Shear-induced dispersion in a dilute suspension of rough spheres
,”
J. Fluid Mech.
309
,
211
223
(
1996
).
19.
Snijkers
,
F.
,
R.
Pasquino
, and
J.
Vermant
, “
Hydrodynamic interactions between two equally sized spheres in viscoelastic fluids in shear flow
,”
Langmuir
29
,
5701
5713
(
2013
).
20.
Batchelor
,
G.
, and
J.-T.
Green
, “
The hydrodynamic interaction of two small freely-moving spheres in a linear flow field
,”
J. Fluid Mech.
56
,
375
400
(
1972
).
21.
Fahs
,
H.
,
G.
Ovarlez
, and
X.
Chateau
, “
Pair-particle trajectories in a shear flow of a Bingham fluid
,”
J. Non-Newtonian Fluid Mech.
261
,
171
187
(
2018
).
22.
Firouznia
,
M.
,
B.
Metzger
,
G.
Ovarlez
, and
S.
Hormozi
, “
The interaction of two spherical particles in simple-shear flows of yield stress fluids
,”
J. Non-Newtonian Fluid Mech.
255
,
19
38
(
2018
).
23.
Darabaner
,
C.
, and
S.
Mason
, “
Particle motions in sheared suspensions XXII: Interactions of rigid spheres (experimental)
,”
Rheol. Acta
6
,
273
284
(
1967
).
24.
Chiu
,
S.-H.
,
T.-W.
Pan
, and
R.
Glowinski
, “
A 3D DLM/FD method for simulating the motion of spheres in a bounded shear flow of Oldroyd-B fluids
,”
Comput. Fluids
172
,
661
673
(
2018
).
25.
Vázquez-Quesada
,
A.
, and
M.
Ellero
, “
SPH modeling and simulation of spherical particles interacting in a viscoelastic matrix
,”
Phys. Fluids
29
,
121609
(
2017
).
26.
Yoon
,
S.
,
M.
Walkley
, and
O.
Harlen
, “
Two particle interactions in a confined viscoelastic fluid under shear
,”
J. Non-Newtonian Fluid Mech.
185-186
,
39
48
(
2012
).
27.
Choi
,
Y. J.
,
M. A.
Hulsen
, and
H. E.
Meijer
, “
An extended finite element method for the simulation of particulate viscoelastic flows
,”
J. Non-Newtonian Fluid Mech.
165
,
607
624
(
2010
).
28.
Hwang
,
W. R.
,
M. A.
Hulsen
, and
H. E. H.
Meijer
, “
Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames
,”
J. Non-Newtonian Fluid Mech.
121
,
15
33
(
2004
).
29.
Vázquez-Quesada
,
A.
,
P.
Español
,
R. I.
Tanner
, and
M.
Ellero
, “
Shear thickening of a non-colloidal suspension with a viscoelastic matrix
,”
J. Fluid Mech.
880
,
1070
1094
(
2019
).
30.
Dai
,
S.
, and
R. I.
Tanner
, “
Rheology of non-colloidal suspensions with viscoelastic matrices
,”
Soft Matter
16
,
9519
9524
(
2020
).
31.
Sarkar
,
K.
, and
W. R.
Schowalter
, “
Deformation of a two-dimensional drop at non-zero Reynolds number in time-periodic extensional flows: Numerical simulation
,”
J. Fluid Mech.
436
,
177
206
(
2001
).
32.
Aggarwal
,
N.
, and
K.
Sarkar
, “
Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear
,”
J. Fluid Mech.
584
,
1
21
(
2007
).
33.
Taylor
,
G. I.
, “
The viscosity of a fluid containing small drops of another fluid
,”
Proc. R. Soc. London, Ser. A.
138
,
41
48
(
1932
).
34.
Stone
,
H. A.
, “
Dynamics of drop deformation and breakup in viscous fluids
,”
Annu. Rev. Fluid Mech.
26
,
65
102
(
1994
).
35.
Guido
,
S.
, “
Shear-induced droplet deformation: Effects of confined geometry and viscoelasticity
,”
Curr. Opin. Colloid Interface Sci.
16
,
61
70
(
2011
).
36.
Ding
,
Y.
,
P. D.
Howes
, and
A. J.
deMello
, “
Recent advances in droplet microfluidics
,”
Anal. Chem.
92
,
132
149
(
2020
).
37.
Loewenberg
,
M.
, and
E.
Hinch
, “
Collision of two deformable drops in shear flow
,”
J. Fluid Mech.
338
,
299
315
(
1997
).
38.
Olapade
,
P. O.
,
R. K.
Singh
, and
K.
Sarkar
, “
Pairwise interactions between deformable drops in free shear at finite inertia
,”
Phys. Fluids
21
,
063302
(
2009
).
39.
Singh
,
R. K.
, and
K.
Sarkar
, “
Effects of viscosity ratio and three dimensional positioning on hydrodynamic interactions between two viscous drops in a shear flow at finite inertia
,”
Phys. Fluids
21
,
103303
(
2009
).
40.
Sarkar
,
K.
, and
R. K.
Singh
, “
Spatial ordering due to hydrodynamic interactions between a pair of colliding drops in a confined shear
,”
Phys. Fluids
25
,
051702
(
2013
).
41.
Chan
,
P. C.-H.
, and
L.
Leal
, “
An experimental study of drop migration in shear flow between concentric cylinders
,”
Int. J. Multiphase Flow
7
,
83
99
(
1981
).
42.
Singh
,
R. K.
,
X. Y.
Li
, and
K.
Sarkar
, “
Lateral migration of a capsule in plane shear near a wall
,”
J. Fluid Mech.
739
,
421
443
(
2014
).
43.
Chen
,
Y.
, and
C.
Wang
, “
Hydrodynamic interaction of two deformable drops in confined shear flow
,”
Phys. Rev. E
90
,
033010
(
2014
).
44.
Aggarwal
,
N.
, and
K.
Sarkar
, “
Effects of matrix viscoelasticity on viscous and viscoelastic drop deformation in a shear flow
,”
J. Fluid Mech.
601
,
63
84
(
2008
).
45.
Mukherjee
,
S.
, and
K.
Sarkar
, “
Effects of matrix viscoelasticity on the lateral migration of a deformable drop in a wall-bounded shear
,”
J. Fluid Mech.
727
,
318
345
(
2013
).
46.
Yuan
,
D.
,
Q.
Zhao
,
S.
Yan
,
S.-Y.
Tang
,
G.
Alici
,
J.
Zhang
, and
W.
Li
, “
Recent progress of particle migration in viscoelastic fluids
,”
Lab Chip
18
,
551
567
(
2018
).
47.
Won
,
D.
, and
C.
Kim
, “
Alignment and aggregation of spherical particles in viscoelastic fluid under shear flow
,”
J. Non-Newtonian Fluid Mech.
117
,
141
146
(
2004
).
48.
Jaensson
,
N.
,
M.
Hulsen
, and
P.
Anderson
, “
Direct numerical simulation of particle alignment in viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
235
,
125
142
(
2016
).
49.
Chilcott
,
M. D.
, and
J. M.
Rallison
, “
Creeping flow of dilute polymer solutions past cylinders and spheres
,”
J. Non-Newtonian Fluid Mech.
29
,
381
432
(
1988
).
50.
Matos
,
H.
,
M.
Alves
, and
P.
Oliveira
, “
New formulation for stress calculation: Application to viscoelastic flow in a T-junction
,”
Numer. Heat Transfer, Part B
56
,
351
371
(
2010
).
51.
Mukherjee
,
S.
, and
K.
Sarkar
, “
Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall
,”
Phys. Fluids
26
,
103102
(
2014
).
52.
Aggarwal
,
N.
, and
K.
Sarkar
, “
Rheology of an emulsion of viscoelastic drops in steady shear
,”
J. Non-Newtonian Fluid Mech.
150
,
19
31
(
2008
).
53.
Szabo
,
P.
,
J. M.
Rallison
, and
E. J.
Hinch
, “
Start-up of flow of a FENE-fluid through a 4:1:4 constriction in a tube
,”
J. Non-Newtonian Fluid Mech.
72
,
73
86
(
1997
).
54.
Ramaswamy
,
S.
, and
L. G.
Leal
, “
The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a Newtonian fluid
,”
J. Non-Newtonian Fluid Mech.
85
,
127
163
(
1999
).
55.
Kim
,
J. M.
,
C.
Kim
,
C.
Chung
,
K. H.
Ahn
, and
S. J.
Lee
, “
Negative wake generation of FENE-CR fluids in uniform and Poiseuille flows past a cylinder
,”
Rheol. Acta
44
,
600
613
(
2005
).
56.
Dou
,
H.-S.
, and
N.
Phan-Thien
, “
Negative wake in the uniform flow past a cylinder
,”
Rheol. Acta
42
,
383
409
(
2003
).
57.
Oliveira
,
P. J.
, “
Asymmetric flows of viscoelastic fluids in symmetric planar expansion geometries
,”
J. Non-Newtonian Fluid Mech.
114
,
33
63
(
2003
).
58.
Sarkar
,
K.
, and
W. R.
Schowalter
, “
Deformation of a two-dimensional viscoelastic drop at non-zero Reynolds number in time-periodic extensional flows
,”
J. Non-Newtonian Fluid Mech.
95
,
315
342
(
2000
).
59.
Tryggvason
,
G.
,
B.
Bunner
,
A.
Esmaeeli
,
D.
Juric
,
N.
Al-Rawahi
,
W.
Tauber
,
J.
Han
,
S.
Nas
, and
Y.-J.
Jan
, “
A front-tracking method for the computations of multiphase flow
,”
J. Comput. Phys.
169
,
708
759
(
2001
).
60.
Unverdi
,
S. O.
, and
G.
Tryggvason
, “
A front-tracking method for viscous, incompressible, multi-fluid flows
,”
J. Comput. Phys.
100
,
25
37
(
1992
).
61.
Li
,
X.
, and
K.
Sarkar
, “
Drop dynamics in an oscillating extensional flow at finite Reynolds numbers
,”
Phys. Fluids
17
,
027103
(
2005
).
62.
Towns
,
J.
,
T.
Cockerill
,
M.
Dahan
,
I.
Foster
,
K.
Gaither
,
A.
Grimshaw
,
V.
Hazlewood
,
S.
Lathrop
,
D.
Lifka
,
G. D.
Peterson
,
R.
Roskies
,
J. R.
Scott
, and
N.
Wilkins-Diehr
, “
XSEDE: Accelerating scientific discovery
,”
Comput. Sci. Eng.
16
,
62
74
(
2014
).
63.
Singh
,
R. K.
, and
K.
Sarkar
, “
Hydrodynamic interactions between pairs of capsules and drops in a simple shear: Effects of viscosity ratio and heterogeneous collision
,”
Phys. Rev. E
92
,
063029
(
2015
).
64.
Subramanian
,
G.
, and
D. L.
Koch
, “
Heat transfer from a neutrally buoyant sphere in a second-order fluid
,”
J. Non-Newtonian Fluid Mech.
144
,
49
57
(
2007
).
65.
D’Avino
,
G.
,
M. A.
Hulsen
,
F.
Snijkers
,
J.
Vermant
,
F.
Greco
, and
P. L.
Maffettone
, “
Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I: Simulation results
,”
J. Rheol.
52
,
1331
1346
(
2008
).
66.
Subramanian
,
G.
, and
D. L.
Koch
, “
Centrifugal forces alter streamline topology and greatly enhance the rate of heat and mass transfer from neutrally buoyant particles to a shear flow
,”
Phys. Rev. Lett.
96
,
134503
(
2006
).
67.
Subramanian
,
G.
, and
D. L.
Koch
, “
Inertial effects on the transfer of heat or mass from neutrally buoyant spheres in a steady linear velocity field
,”
Phys. Fluids
18
,
073302
(
2006
).
68.
Singh
,
R. K.
, and
K.
Sarkar
, “
Inertial effects on the dynamics, streamline topology and interfacial stresses due to a drop in shear
,”
J. Fluid Mech.
683
,
149
171
(
2011
).
69.
Yang
,
M.
, and
E. S. G.
Shaqfeh
, “
Mechanism of shear thickening in suspensions of rigid spheres in Boger fluids. Part I: Dilute suspensions
,”
J. Rheol.
62
,
1363
1377
(
2018
).
70.
Leal
,
L. G.
, “
Flow induced coalescence of drops in a viscous fluid
,”
Phys. Fluids
16
,
1833
1851
(
2004
).
71.
Baldessari
,
F.
, and
L. G.
Leal
, “
Effect of overall drop deformation on flow-induced coalescence at low capillary numbers
,”
Phys. Fluids
18
,
013602
(
2006
).
72.
Abdelwahed
,
W.
,
G.
Degobert
,
S.
Stainmesse
, and
H.
Fessi
, “
Freeze-drying of nanoparticles: Formulation, process and storage considerations
,”
Adv. Drug Delivery Rev.
58
,
1688
1713
(
2006
).
73.
Taylor
,
G. I.
, “
The formation of emulsions in definable fields of flow
,”
Proc. R. Soc. London A
146
,
501
523
(
1934
).
74.
Pozrikidis
,
C.
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(
Cambridge University
,
Cambridge
,
1992
), Vol. 259, p.
xi
.
75.
Kim
,
S.
, and
S.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Dover
,
New York
,
2005
).
You do not currently have access to this content.