Recent work modeling the rheological behavior of human blood indicates that blood has all the hallmark features of a complex material, including shear-thinning, viscoelastic behavior, yield stress, and thixotropy. There is renewed interest in the modeling of human blood with thixo-elasto-visco-plastic rheological models. Previous work [Armstrong and Tussing, Phys. Fluids 32, 094111 (2020)] has led to the development of the enhanced thixotropic viscoelastic model for blood (ethixo-mHAWB; called here, after a minor modification, ETV) that incorporates viscoelasticity to a thixotropic model for the stress contributed by the rouleaux aggregates, in addition to describing using a nonlinear viscoelastic model the stress contributed by the individual red blood cells deforming under the action of the flow. This model has shown superior performance in fitting human blood steady state and transient rheological data from a strain-controlled rheometer [Horner et al., J. Rheol. 62, 577–591 (2018); 63, 799–813 (2019)] as compared to other alternate models. In the present work, we first develop another variant of the ETV model, the enhanced structural stress thixotropic-viscoelastic (ESSTV) model, and the modification patterned following an elastoviscoplastic model developed recently [Varchanis et al., J. Rheol. 63, 609–639 (2019)]. We develop full tensorial stress formulations of the rouleaux stresses for both the above-mentioned models, resulting in the t-ETV and t-ESSTV models. We use steady state and step-ups, and step-downs in shear rate data to independently fit the parameters of all before-mentioned models. We compare predictions against experimental data obtained on small, large, and unidirectional large amplitude oscillatory shear conditions. We find that the full tensor stress formulations t-ETV and t-ESSTV significantly improved the predictive capability of the earlier ETV model.

1.
Fahraeus
,
R.
, “
The suspension stability of the blood
,”
Physiol. Rev.
9
,
241
274
(
1929
).
2.
Baskurt
,
O.
,
B.
Neu
, and
H. J.
Meiselman
,
Red Blood Cell Aggregation
(
CRC
,
New York
,
2011
).
3.
Schmid-Schonbein
,
H.
,
P.
Gaehtgens
, and
H.
Hirsch
, “
On the shear rate dependence of red cell aggregation in vitro
,”
J. Clin. Invest.
47
,
1447
1454
(
1968
).
4.
Merrill
,
E. W.
,
E. R.
Gilliland
,
G.
Cokelet
,
H.
Shin
,
A.
Britten
, and
R. E.
Wells
, “
Rheology of human blood, near and at zero flow
,”
Biophys. J.
3
,
199
213
(
1963
).
5.
Thurston
,
G. B.
, “
Viscoelasticity of human blood
,”
Biophys. J.
12
,
1205
1217
(
1972
).
6.
Dintenfass
,
L.
, “
Thixotropy of blood and proneness to thrombus formation
,”
Circ. Res.
11
,
233
239
(
1962
).
7.
Beris
,
A. N.
, “
Hemorheology
,” in
Theory and Applications of Colloidal Suspension Rheology
, edited by
N. J.
Wagner
and
J.
Mewis
(
Cambridge University
,
Cambridge
,
2021
), Chap. 8, pp.
316
351
.
8.
Horner
,
J. S.
,
M. J.
Armstrong
,
N. J.
Wagner
, and
A. N.
Beris
, “
Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear
,”
J. Rheol.
62
(
2
),
577
591
(
2018
).
9.
Horner
,
J. S.
,
M. J.
Armstrong
,
N. J.
Wagner
, and
A. N.
Beris
, “
Measurements of human blood viscoelasticity and thixotropy under steady and transient shear and constitutive modeling thereof
,”
J. Rheol.
63
(
5
),
799
813
(
2019
).
10.
Armstrong
,
M. J.
, and
J.
Tussing
, “
A methodology for adding thixotropy to Oldroyd-8 family of viscoelastic models for characterization of human blood
,”
Phys. Fluids
32
,
094111
(
2020
).
11.
Mauer
,
J.
,
S.
Mendez
,
L.
Lanotte
,
F.
Nicoud
,
M.
Abkarian
,
G.
Gompper
, and
D. A.
Fedosov
, “
Flow-induced transitions of red blood cell shapes under shear
,”
Phys. Rev. Lett.
121
,
118103
(
2018
).
12.
Schmid-Schonbein
,
H.
, and
R.
Wells
, “
Fluid drop-like transition of erythrocytes under shear
,”
Science
165
,
288
291
(
1969
).
13.
Schmid-Schonbein
,
H.
,
R.
Wells
, and
J.
Goldstone
, “
Influence of deformability of human red cells upon blood viscosity
,”
Circ. Res.
15
,
131
143
(
1969
).
14.
Chien
,
S.
, “
Biophysical behavior of red cells in suspensions
,” in
The Red Blood Cell
, edited by
D. M.
Surgenor
(
Academic
,
New York
,
1975
), Vol. 2, Chap. 26, pp.
1032
1133
.
15.
Lanotte
,
L.
,
J.
Mauer
,
S.
Mendez
,
D. A.
Fedosov
,
J.
Fromental
,
V.
Claveria
,
F.
Nicoud
,
G.
Gompper
, and
M.
Abkarian
, “
Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
13289
13294
(
2016
).
16.
Minetti
,
C.
,
V.
Audemar
,
T.
Podgorski
, and
G.
Coupier
, “
Dynamics of a large population of red blood cells under shear flow
,”
J. Fluid Mech.
864
,
408
448
(
2019
).
17.
Chien
,
S.
,
S.
Usami
, and
J. F.
Bertles
, “
Abnormal rheology of oxygenated blood in sickle cell anemia
,”
J. Clin. Invest.
49
,
623
634
(
1970
).
18.
Letcher
,
R. L.
,
S.
Chien
,
T. G.
Pickering
,
J. E.
Sealey
, and
J. H.
Laragh
, “
Direct relationship between blood pressure and blood viscosity in normal and hypertensive subjects: Role of fibrinogen and concentration
,”
Am. J. Med.
70
,
1195
1202
(
1981
).
19.
Yarnell
,
J. W. G.
,
I. A.
Baker
,
P. M.
Sweetnam
,
D.
Bainton
,
J. R.
O’Brien
,
P. J.
Whitehead
, and
P. C.
Elwood
, “
Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease: The Caerphilly and Speedwell collaborative heart disease studies
,”
Circulation
83
,
836
844
(
1991
).
20.
Le Devehat
,
C.
,
M.
Vimeux
, and
T.
Khodabandehlou
, “
Blood rheology in patients with diabetes mellitus
,”
Clin. Hemorheol. Microcirc.
30
,
297
300
(
2004
).
21.
Lee
,
B.
, “
Computational fluid dynamics in cardiovascular disease
,”
Korean Circ. J.
41
,
423
430
(
2011
).
22.
Yilmaz
,
F.
, and
M. Y.
Gundogdu
, “
A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions
,”
Korea-Aust. Rheol. J.
20
,
197
211
(
2008
).
23.
Sequeira
,
A.
, and
J.
Janela
, “
An overview of some mathematical models of blood rheology
,” in
A Portrait of State-of-the-Art Research at the Technical University of Lisbon
, edited by
M. S.
Pereira
(
Springer
,
Dordrecht
,
2007
).
24.
Oldroyd
,
J. G.
, “
On the formulation of rheological equations of state
,”
Proc. R. Soc. London, Ser. A
200
(
1063
),
523
541
(
1950
).
25.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids Fluid Mechanics
, 2nd ed. (
Wiley
,
New York
,
1987
), Vol. 1.
26.
Beris
,
A. N.
, and
B. J.
Edwards
,
Thermodynamics of Flowing Systems with Internal Microstructure
(
Oxford University
,
New York
,
1994
).
27.
Barnes
,
A. H.
, “
Thixotropy—A review
,”
J. Non-Newtonian Fluid Mech.
70
,
1
33
(
1997
).
28.
Mujumdar
,
A.
,
A. N.
Beris
, and
A. B.
Metzner
, “
Transient phenomena in thixotropic systems
,”
J. Nonnewton. Fluid Mech.
102
,
157
178
(
2002
).
29.
Dullaert
,
K.
, and
J.
Mewis
, “
A structural kinetics model for thixotropy
,”
J. Nonnewton. Fluid Mech.
139
,
21
30
(
2006
).
30.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147–148
,
214
227
(
2009
).
31.
Saramito
,
P.
, “
A new elastoviscoplastic model based on the Herschel-Bulkley viscoplastic model
,”
J. Non-Newtonian Fluid Mech.
158
,
154
161
(
2009
).
32.
de Souza Mendes
,
P. R.
, “
Modeling the thixotropic behavior of structured fluids
,”
J. Non-Newtonian Fluid Mech.
164
,
66
75
(
2009
).
33.
Dimitriou
,
C. J.
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)
,”
J. Rheol.
57
(
1
),
27
70
(
2013
).
34.
Dimitriou
,
C. J.
, and
G. H.
McKinley
, “
A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid
,”
Soft Matter
10
,
6619
6644
(
2014
).
35.
Dimitriou
,
C. J.
, and
G. H.
McKinley
, “
A canonical framework for modeling elasto-viscoplasticity in complex fluids
,”
J. Non-Newtonian Fluid Mech.
265
,
116
132
(
2019
).
36.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
A multimode structural kinetics constitutive equation for the transient rheology of thixotropic elasto-viscoplastic fluids
,”
J. Rheol.
62
,
321
342
(
2018
).
37.
Varchanis
,
S.
,
G.
Makrigiorgos
,
P.
Moschopoulos
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Modeling the rheology of thixotropic elasto-visco-plastic materials
,”
J. Rheol.
63
,
609
639
(
2019
).
38.
Phan-Thien
,
N.
, and
R. I.
Tanner
, “
A new constitutive equation derived from network theory
,”
J. Nonnewton. Fluid Mech.
2
(
4
),
353
365
(
1977
).
39.
Apostolidis
,
A. J.
,
M. J.
Armstrong
, and
A. N.
Beris
, “
Modeling of human blood rheology in transient shear flows
,”
J. Rheol.
59
(
1
),
275
298
(
2015
).
40.
Horner
,
J. S.
,
A. N.
Beris
,
D. S.
Woulfe
, and
N. J.
Wagner
, “
Effects of ex vivo aging and storage temperature on blood viscosity
,”
Clin. Hemorheol. Microcirc.
70
(
2
),
155
172
(
2018
).
41.
Armstrong
,
M. J.
,
A. N.
Beris
, and
N. J.
Wagner
, “
An adaptive parallel tempering method for the dynamic data-driven parameter estimation of nonlinear models
,”
AIChE J.
63
,
1937
1958
(
2016
).
42.
Clarion
,
M.
,
M.
Deegan
,
T.
Helton
,
J.
Hudgins
,
N.
Monteferrante
,
E.
Ousley
, and
M.
Armstrong
, “
Contemporary modeling and analysis of steady state and transient human blood rheology
,”
Rheol. Acta
57
(
2
),
141
168
(
2018
).
43.
Armstrong
,
M.
, and
A.
Pincot
, “
Integration of thixotropy into Giesekus model for characterization of human blood
,”
AIP Adv.
11
,
035029
(
2021
).
44.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
(
1–2
),
69
109
(
1982
).
45.
Armstrong
,
M. J.
,
A. N.
Beris
,
S.
Rogers
, and
N. J.
Wagner
, “
Dynamic shear rheology of a thixotropic suspension: Comparison of an improved structure-based model with large amplitude oscillatory shear experiments
,”
J. Rheol.
60
(
3
),
433
450
(
2016
).
46.
Armstrong
,
M.
,
M.
Scully
,
M.
Clark
,
T.
Corrigan
, and
C.
James
, “
A simple approach for adding thixotropy to an elasto-visco-plastic rheological model to facilitate structural interrogation of human blood
,”
J. Non-Newtonian Fluid Mech.
290
,
104503
(
2021
).
47.
Giannokostas
,
K.
,
P.
Moschopoulos
,
S.
Varchanis
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Advanced constitutive modeling of the thixotropic elasto-visco-plastic behavior of blood: Description of the model and rheological predictions
,”
Materials
13
,
4184
(
2020
).
48.
White
,
J. L.
, and
A. B.
Metzner
, “
Development of constitutive equations for polymeric melts and solutions
,”
J. Appl. Polym. Sci.
7
,
1867
1889
(
1963
).
49.
Cross
,
M. M.
, “
Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems
,”
J. Colloid Sci.
20
,
417
437
(
1965
).
50.
Souvaliotis
,
A.
, and
A. N.
Beris
, “
An extended White-Metzner viscoelastic fluid model based on an internal structure parameter
,”
J. Rheol.
36
,
241
271
(
1992
).
51.
Wagner
,
N. J.
, and
J.
Mewis
,
Theory and Applications of Colloidal Suspension Rheology
(
Cambridge University
,
Cambridge
,
2021
).
52.
Armstrong
,
M.
,
K.
Rook
,
W.
Pulles
,
M.
Deegan
, and
T.
Corrigan
, “
Importance of viscoelasticity in the thixotropic behavior of human blood
,”
Rheol. Acta
60
,
119
140
(
2021
).
53.
Dataset 1:
Armstrong
,
M. J.
, and
J. S.
Horner
, “
AUG18 human blood rheology
” (
2021
).
54.
Dataset 2:
Armstrong
,
M. J.
, “
FEB19 Blood Rheology ARESG2 SS, SAOS, LAOS, TRIANGLE RAMP, UDLAOS
,” Mendeley Data Sets (
2020
).
55.
Dataset 3:
Armstrong
,
M. J.
, and
J. S.
Horner
, “
FEB20 human blood rheology
” (
2021
).
56.
Dataset 4:
Armstrong
,
M. J.
, and
J. S.
Horner
, “
NOV18 human blood rheology
” (
2020
).
57.
Dataset 5:
Armstrong
,
M. J.
, and
J. S.
Horner
, “
DEC18 human blood rheology
” (
2020
).
58.
Armstrong
,
M.
,
J.
Horner
,
M.
Clark
,
M.
Deegan
,
T.
Hill
,
C.
Keith
, and
L.
Mooradian
, “
Evaluating rheological models for human blood using steady state, transient, and oscillatory shear predictions
,”
Rheol. Acta
57
(
11
),
705
728
(
2018
).
59.
Stickel
,
J. J.
,
J. S.
Knutsen
, and
M. W.
Liberatore
, “
Response of elastoviscoplastic materials to large amplitude oscillatory shear flow in the parallel-plate and cylindrical Couette geometries
,”
J. Rheol.
57
(
6
),
1569
1596
(
2013
).
60.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000346 for ETV and ESSTV model fits of steady state and six step-up/down in shear rate tests, with SAOS predictions of donor 1 and additional ETV LAOS and UDLAOS predictions of donor 1.

Supplementary Material

You do not currently have access to this content.