In this work, the flow-induced crystallization of two polylactides (PLAs) with different microstructures (different l-lactic acid contents) is studied using simple shear, uniaxial extension and capillary flow experiments. In a simple shear and capillary flow, an increase in shear rate and a decrease in temperature were found to enhance the crystallization kinetics particularly for Weissenberg numbers (based on the reptation relaxation time, Wi) greater than 1 (strong flow causing chain stretching). On the other hand, in a uniaxial extensional flow, once a critical Hencky strain is achieved, crystallization starts independently of strain rate and temperature. The amount of mechanical work per unit volume imposed/dissipated onto the polymers during flow to initialize crystallization was also calculated in the simple shear, capillary, and extensional flow. The critical mechanical work for the onset of flow-induced crystallization was found to be independent of temperature and degree of molecular chain stretch (Wi) as Wi becomes greater than 1. The critical mechanical work for the onset of flow-induced crystallization in an extensional flow was found to be much smaller than that in a shear flow. The PLA sample with higher content of PLLA showed slightly higher zero-shear viscosity and a smaller thermodynamic barrier for the onset of crystallization. Finally, the degree of crystallinity increases linearly from 0% at the start of the flow-induced crystallization region and reaches a plateau at Wi equals to around 1.

1.
Henton
,
D. E.
,
P.
Gruber
,
J.
Lunt
, and
J.
Randall
, “
Polylactic acid technology
,”
Adv. Mater.
12
,
1841
1846
(
2000
).
2.
Nagarajan
,
V.
,
A. K.
Mohanty
, and
M.
Misra
, “
Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance
,”
ACS Sustain. Chem. Eng.
4
,
2899
2916
(
2016
).
3.
Liu
,
G.
,
X.
Zhang
, and
D.
Wang
, “
Tailoring crystallization: Towards high-performance poly (lactic acid)
,”
Adv. Mater.
26
,
6905
6911
(
2014
).
4.
Othman
,
N.
,
C.
Xu
,
P.
Mehrkhodavandi
, and
S. G.
Hatzikiriakos
, “
Thermorheological and mechanical behavior of polylactide and its enantiomeric diblock copolymers and blends
,”
Polymer
53
,
2443
2452
(
2012
).
5.
Laura
,
M.
, and
D.
Lorenzo
, Thermal Properties of Bio-based Polymers
(Springer Nature, Switzerland,
2019
).
6.
Bowen
,
E. G.
,
J. L.
Pawsey
,
H.
Webster
,
J. M.
Somerville
, and
T. T.
Toakley
, “
Morphology of crystallizing polymers
,”
Nature
169
,
913
914
(
1952
).
7.
Piorkowska
,
E.
, and
G. C.
Rutledge
,
Handbook of Polymer Crystallization
(John Wiley & Sons Inc., Hoboken, NJ,
2013
).
8.
Carraher
, Jr.,
C. E.
,
Carraher’s Polymer Chemistry
(CRC Press, Boca Raton,
2017
).
9.
Janeschitz-Kriegl
,
H.
, and
E.
Ratajski
, “
Some fundamental aspects of the kinetics of flow-induced crystallization of polymers
,”
Colloid Polym. Sci.
288
,
1525
1537
(
2010
).
10.
Roozemond
,
P. C.
,
M.
van Drongelen
,
Z.
Ma
,
M. A.
Hulsen
, and
G. W. M.
Peters
, “
Modeling flow-induced crystallization in isotactic polypropylene at high shear rates
,”
J. Rheol.
59
,
613
642
(
2015
).
11.
Custódio
,
F. J. M. F.
,
R. J. A.
Steenbakkers
,
P. D.
Anderson
,
G. W. M.
Peters
, and
H. E. H.
Meijer
, “
Model development and validation of crystallization behavior in injection molding prototype flows
,”
Macromol. Theory Simul.
18
,
469
494
(
2009
).
12.
Roozemond
,
P. C.
,
T. B.
Van Erp
, and
G. W. M.
Peters
, “
Flow-induced crystallization of isotactic polypropylene: Modeling formation of multiple crystal phases and morphologies
,”
Polymer
89
,
69
80
(
2016
).
13.
Graham
,
R. S.
, “
Understanding flow-induced crystallization in polymers: A perspective on the role of molecular simulations
,”
J. Rheol.
63
,
203
214
(
2019
).
14.
Grosso
,
G.
,
E. M.
Troisi
,
N. O.
Jaensson
,
G. W. M.
Peters
, and
P. D.
Anderson
, “
Modelling flow induced crystallization of IPP: Multiple crystal phases and morphologies
,”
Polymer
182
,
121806
(
2019
).
15.
Wingstrand
,
S. L.
,
L.
Imperiali
,
R.
Stepanyan
, and
O.
Hassager
, “
Extension induced phase separation and crystallization in semidilute solutions of ultra high molecular weight polyethylene
,”
Polymer
136
,
215
223
(
2018
).
16.
Zhao
,
Z.
,
Q.
Yang
,
P.
Gong
,
H.
Sun
,
P.
Wu
,
Y.
Huang
, and
X.
Liao
, “
Effects of process temperatures on the flow-induced crystallization of isotactic polypropylene/poly(ethylene terephthalate) blends in microinjection molding
,”
Ind. Eng. Chem. Res.
56
,
9467
9477
(
2017
).
17.
Wang
,
H.
,
J. K.
Keum
,
A.
Hiltner
, and
E.
Baer
, “
Confined crystallization of peo in nanolayered films impacting structure and oxygen permeability
,”
Macromolecules
42
,
7055
7066
(
2009
).
18.
Derakhshandeh
,
M.
,
B.
Jazrawi
,
S. G.
Hatzikiriakos
, and
A. K.
Doufas
, “
Flow-induced crystallization of polypropylenes in capillary flow
,”
Rheol. Acta
54
,
207
221
(
2015
).
19.
Derakhshandeh
,
M.
,
G.
Mozaffari
,
A. K.
Doufas
, and
S. G.
Hatzikiriakos
, “
Quiescent crystallization of polypropylene: Experiments and modeling
,”
J. Polym. Sci. Part B: Polym. Phys.
52
,
1259
1275
(
2014
).
20.
Eriksson
,
M.
,
J.
Hamers
,
T.
Peijs
, and
H.
Goossens
, “
The influence of graft length and density on dispersion, crystallisation and rheology of poly(ε-caprolactone)/silica nanocomposites
,”
Molecules
24
,
2106
(
2019
).
21.
Derakhshandeh
,
M.
,
A. K.
Doufas
, and
S. G.
Hatzikiriakos
, “
Quiescent and shear-induced crystallization of polyprophylenes
,”
Rheol. Acta
53
,
519
535
(
2014
).
22.
Van Meerveld
,
J.
,
G. W. M.
Peters
, and
M.
Hütter
, “
Towards a rheological classification of flow induced crystallization experiments of polymer melts
,”
Rheol. Acta
44
,
119
134
(
2004
).
23.
Zhong
,
Y.
,
H.
Fang
,
Y.
Zhang
,
Z.
Wang
,
J.
Yang
, and
Z.
Wang
, “
Rheologically determined critical shear rates for shear-induced nucleation rate enhancements of poly(lactic acid)
,”
ACS Sustain. Chem. Eng.
1
,
663
672
(
2013
).
24.
Xu
,
H.
,
L.
Xie
, and
M.
Hakkarainen
, “
Beyond a model of polymer processing-triggered shear: Reconciling Shish-Kebab formation and control of chain degradation in sheared poly(l-lactic acid)
,”
ACS Sustain. Chem. Eng.
3
,
1443
1452
(
2015
).
25.
Jalali
,
A.
,
M. A.
Huneault
,
M.
Nofar
,
P. C.
Lee
, and
C. B.
Park
, “
Effect of branching on flow-induced crystallization of poly (lactic acid)
,”
Eur. Polym. J.
119
,
410
420
(
2019
).
26.
Jalali
,
A.
,
S.
Shahbikian
,
M. A.
Huneault
, and
S.
Elkoun
, “
Effect of molecular weight on the shear-induced crystallization of poly(lactic acid)
,”
Polymer
112
,
393
401
(
2017
).
27.
Farah
,
M.
, and
R. E. S.
Bretas
, “
Characterization of i-PP shear-induced crystallization layers developed in a slit die
,”
J. Appl. Polym. Sci.
91
,
3528
3541
(
2004
).
28.
Scelsi
,
L.
, and
M. R.
Mackley
, “
Rheo-optic flow-induced crystallisation of polypropylene and polyethylene within confined entry-exit flow geometries
,”
Rheol. Acta
47
,
895
908
(
2008
).
29.
Wang
,
Z.
,
F.
Su
,
Y.
Ji
,
H.
Yang
,
N.
Tian
,
J.
Chang
,
L.
Meng
, and
L.
Li
, “
Transition from chain- to crystal-network in extension induced crystallization of isotactic polypropylene
,”
J. Rheol.
61
,
589
599
(
2017
).
30.
Ness
,
J. N.
, and
J. Z.
Liang
, “
A study of rheological properties and crystallization behavior for HDPE melts during extrusion
,”
J. Appl. Polym. Sci.
48
,
557
561
(
1993
).
31.
Wingstrand
,
S. L.
,
O.
Hassager
,
D.
Parisi
,
A. L.
Borger
, and
K.
Mortensen
, “
Flow induced crystallization prevents melt fracture of HDPE in uniaxial extensional flow
,”
J. Rheol.
62
,
1051
1060
(
2018
).
32.
Hadinata
,
C.
,
C.
Gabriel
,
M.
Ruellmann
,
N.
Kao
, and
H. M.
Laun
, “
Shear-induced crystallization of PB-1 up to processing-relevant shear rates
,”
Rheol. Acta
45
,
539
546
(
2006
).
33.
Wang
,
Z.
,
J.
Ju
,
L.
Meng
,
N.
Tian
,
J.
Chang
,
H.
Yang
,
Y.
Ji
,
F.
Su
, and
L.
Li
, “
Structural and morphological transitions in extension-induced crystallization of poly(1-butene) melt
,”
Soft Matter
13
,
3639
3648
(
2017
).
34.
Janeschitz-Kriegl
,
H.
,
E.
Ratajski
, and
M.
Stadlbauer
, “
Flow as an effective promotor of nucleation in polymer melts: A quantitative evaluation
,”
Rheol. Acta
42
,
355
364
(
2003
).
35.
Hamad
,
F. G.
,
R. H.
Colby
, and
S. T.
Milner
, “
Onset of flow-induced crystallization kinetics of highly isotactic polypropylene
,”
Macromolecules
48
,
3725
3738
(
2015
).
36.
Hamad
,
F. G.
,
R. H.
Colby
, and
S. T.
Milner
, “
Transition in crystal morphology for flow-induced crystallization of isotactic polypropylene
,”
Macromolecules
49
,
5561
5575
(
2016
).
37.
Seo
,
J.
,
D.
Parisi
,
A. M.
Gohn
,
A.
Han
,
L.
Song
,
Y.
Liu
,
R. P.
Schaake
,
A. M.
Rhoades
, and
R. H.
Colby
, “
Flow-induced crystallization of poly(ether ether ketone): Universal aspects of specific work revealed by corroborative rheology and x-ray scattering studies
,”
Macromolecules
53
,
10040
10050
(
2020
).
38.
Nazari
,
B.
,
A. M.
Rhoades
,
R. P.
Schaake
, and
R. H.
Colby
, “
Flow-induced crystallization of PEEK: Isothermal crystallization kinetics and lifetime of flow-induced precursors during isothermal annealing
,”
ACS Macro Lett.
5
,
849
853
(
2016
).
39.
Iqbal
,
N.
,
K.
Jariyavidyanont
,
A. M.
Rhoades
, and
R.
Androsch
, “
Critical specific work of flow for shear-induced formation of crystal nuclei in poly (L-lactic acid)
,”
Polym. Cryst.
2
,
1
7
(
2019
).
40.
Du
,
M.
,
K.
Jariyavidyanont
,
I.
Kühnert
,
R.
Boldt
, and
R.
Androsch
, “
Effect of molar mass on critical specific work of flow for shear-induced crystal nucleation in poly (L-lactic acid)
,”
Polymers
13
,
1
12
(
2021
).
41.
Van Ruymbeke
,
E.
,
R.
Keunings
, and
C.
Bailly
, “
Prediction of linear viscoelastic properties for polydisperse mixtures of entangled star and linear polymers: Modified tube-based model and comparison with experimental results
,”
J. Non-Newton. Fluid Mech.
128
,
7
22
(
2005
).
42.
Andrewst
,
R. D.
, and
A. V.
Tobolsky
, “
Relaxation time spectrum and calculation of bulk viscosity
,”
J. Polym. Sci.
VII
,
221
242
(
1950
).
43.
White
,
E. E. B.
,
H. H.
Winter
, and
J. P.
Rothstein
, “
Extensional-flow-induced crystallization of isotactic polypropylene
,”
Rheol. Acta
51
,
303
314
(
2012
).
44.
Mykhaylyk
,
O. O.
,
P.
Chambon
,
C.
Impradice
,
J. P. A.
Fairclough
,
N. J.
Terrill
, and
A. J.
Ryan
, “
Control of structural morphology in shear-induced crystallization of polymers
,”
Macromolecules
43
,
2389
2405
(
2010
).
45.
Derakhshandeh
,
M.
,
N.
Noroozi
,
L. L.
Schafer
,
D.
Vlassopoulos
, and
S. G.
Hatzikiriakos
, “
Dynamics of partially miscible polylactide-poly(ε-caprolactone) blends in the presence of cold crystallization
,”
Rheol. Acta
55
,
657
671
(
2016
).
46.
dos Santos Silva
,
I. D.
,
H.
Schafer
,
N. G.
Jaques
,
D. D.
Siqueira
,
A.
Ries
,
D. D.
de Souza Morais
,
K.
Haag
,
K.
Koschek
,
L. H.
Carvalho
, and
R. M. R.
Wellen
, “
An investigation of PLA/Babassu cold crystallization kinetics
,”
J. Therm. Anal. Calorim.
141
,
1389
1397
(
2020
).
47.
Othman
,
N.
,
A.
Acosta-Ramírez
,
P.
Mehrkhodavandi
,
J. R.
Dorgan
, and
S. G.
Hatzikiriakos
, “
Solution and melt viscoelastic properties of controlled microstructure poly(lactide)
,”
J. Rheol.
55
,
987
1005
(
2011
).
48.
Othman
,
N.
,
B.
Jazrawi
,
P.
Mehrkhodavandi
, and
S. G.
Hatzikiriakos
, “
Wall slip and melt fracture of poly(lactides)
,”
Rheol. Acta
51
,
357
369
(
2012
).
49.
Dorgan
,
J. R.
,
J.
Janzen
,
M. P.
Clayton
,
S. B.
Hait
, and
D. M.
Knauss
, “
Melt rheology of variable L-content poly(lactic acid)
,”
J. Rheol.
49
,
607
619
(
2005
).
50.
Larson
,
R. G.
,
T.
Sridhar
,
L. G.
Leal
,
G. H.
McKinley
,
A. E.
Likhtman
, and
T. C. B.
McLeish
, “
Definitions of entanglement spacing and time constants in the tube model
,”
J. Rheol.
47
,
809
818
(
2003
).
51.
Volpe
,
V.
,
F.
Foglia
, and
R.
Pantani
, “
Flow-induced crystallization of a poly(lactic acid): Effect of the application of low shear rates on the polymorphous crystallization
,”
Polymer
229
,
123997
(
2021
).
52.
Lauritzen
,
J. I.
, and
J. D.
Hoffman
, “
Extension of theory of growth of chain-folded polymer crystals to large undercoolings
,”
J. Appl. Phys.
44
,
4340
4352
(
1973
).
53.
Hoffman
,
J. D.
,
G. T.
Davis
, and
J. I.
Lauritzen
,
The rate of crystallization of linear polymers with chain folding
, in
Treatise on Solid State Chemistry
(Plenum Press, New York,
1976
).
54.
Derakhshandeh
,
M.
, and
S. G.
Hatzikiriakos
, “
Flow-induced crystallization of high-density polyethylene: The effects of shear and uniaxial extension
,”
Rheol. Acta
51
,
315
327
(
2012
).
55.
Hadinata
,
C.
,
D.
Boos
,
C.
Gabriel
,
E.
Wassner
,
M.
Rullmann
,
N.
Kao
, and
M.
Laun
, “
Elongation-induced crystallization of a high molecular weight isotactic polybutene-1 melt compared to shear-induced crystallization
,”
J. Rheol.
51
,
195
215
(
2007
).
56.
Hatzikiriakos
,
S. G.
, and
J. M.
Dealy
, “
Start-up pressure transients in a capillary
,”
Rheom. Polym. Eng. Sci.
34
,
493
499
(
1994
).
You do not currently have access to this content.