We discuss the connection between high-temperature mechanics, block structure, and composition of a model series of industrially relevant, soft, thermoplastic elastomers (TPEs) containing polydisperse hard blocks (HBs). The high-strain deformation behavior of these materials results from the combination of multiple dynamics in the system, i.e., the HB associations and the mobile and entangled amorphous phase. Many soft-TPEs show a reduction in toughness with increasing temperature. Molecular weight (Mw) has been shown to improve the temperature-dependent mechanics by increasing network connectivity. In this work, we investigate the possibility to increase the network connectivity by tuning block length at constant Mw and composition. The average number of HBs per chain can be used to quantify network connectivity; however, by using block statistics, we show how increasing this value is not enough to increase the high-temperature mechanics, especially in the case of polydisperse HBs. Since temperature affects the HB ability to associate with each other, only the number of associated HBs per chain determines network connectivity. The experimental results are consistent with modeling predictions, revealing how decreasing the average block length influences the crystal stability, which ultimately controls network connectivity, and how this relationship is affected by temperature.

1.
Fakirov
,
S.
,
Handbook of Condensation Thermoplastic Elastomers
(
Wiley-VCH
,
Weinheim
,
2005
).
2.
Nébouy
,
M.
,
A.
De Almeida
,
S.
Brottet
, and
G. P.
Baeza
, “
Process-oriented structure tuning of PBT/PTHF thermoplastic elastomers
,”
Macromolecules
51
,
6291
6302
(
2018
).
3.
Stevenson
,
J. C.
, and
S. L.
Cooper
, “
Microstructure and property changes accompanying hard-segment crystallization in block copoly (ether-ester) elastomers
,”
Macromolecules
21
,
1309
1316
(
1988
).
4.
Gabriëlse
,
W.
,
M.
Soliman
, and
K.
Dijkstra
, “
Microstructure and phase behavior of block copoly (ether ester) thermoplastic elastomers
,”
Macromolecules
34
,
1685
1693
(
2001
).
5.
Litvinov
,
V. M.
,
M.
Bertmer
,
L.
Gasper
,
D. E.
Demco
, and
B.
Blümich
, “
Phase composition of block copoly (ether ester) thermoplastic elastomers studied by solid-state NMR techniques
,”
Macromolecules
36
,
7598
7606
(
2003
).
6.
De Almeida
,
A.
,
M.
Nébouy
, and
G. P.
Baeza
, “
Bimodal crystallization kinetics of PBT/PTHF segmented block copolymers: Impact of the chain rigidity
,”
Macromolecules
52
,
1227
1240
(
2019
).
7.
Smith
,
T. L.
, “
Tensile strength of polyurethane and other elastomeric block copolymers
,”
J. Polym. Sci., Part B: Polym. Phys.
12
,
1825
1848
(
1974
).
8.
Gaymans
,
R. J.
, “
Segmented copolymers with monodisperse crystallizable hard segments: Novel semi-crystalline materials
,”
Prog. Polym. Sci.
36
,
713
748
(
2011
).
9.
Konyukhova
,
E. V.
,
V. M.
Neverov
,
Y. K.
Godovsky
,
S. N.
Chvalun
, and
M.
Soliman
, “
Deformation of polyether-polyester thermoelastoplastics: Mechanothermal and structural characterisation
,”
Macromol. Mater. Eng.
287
,
250
265
(
2002
).
10.
Gorce
,
J.-N.
,
J. W.
Hellgeth
, and
T. C.
Ward
, “
Mechanical hysteresis of a polyether polyurethane thermoplastic elastomer
,”
Polym. Eng. Sci.
33
,
1170
1176
(
1993
).
11.
Biemond
,
G. J. E.
,
J.
Feijen
, and
R. J.
Gaymans
, “
Tensile properties of segmented block copolymers with monodisperse hard segments
,”
J. Mater. Sci.
43
,
3689
3696
(
2008
).
12.
Aime
,
S.
,
N. D.
Eisenmenger
, and
T. A. P.
Engels
, “
A model for failure in thermoplastic elastomers based on Eyring kinetics and network connectivity
,”
J. Rheol.
61
,
1329
1342
(
2017
).
13.
Auriemma
,
F.
,
C.
De Rosa
,
M.
Scoti
,
R.
Di Girolamo
,
A.
Malafronte
,
M.
Christian D'Alterio
,
L.
Boggioni
,
S.
Losio
,
A.
Caterina Boccia
, and
I.
Tritto
, “
Structure and mechanical properties of ethylene/1-octene multiblock copolymers from chain shuttling technology
,”
Macromolecules
52
,
2669
2680
(
2019
).
14.
Sbrescia
,
S.
,
J.
Ju
,
T.
Engels
,
E.
Van Ruymbeke
, and
M.
Seitz
, “
Morphological origins of temperature and rate dependent mechanical properties of model soft thermoplastic elastomers
,”
J. Polym Sci.
59
,
477
493
(
2021
).
15.
Eyring
,
H.
, “
Viscosity, plasticity, and diffusion as examples of absolute reaction rates
,”
J. Chem. Phys.
4
,
283
291
(
1936
).
16.
Xie
,
H.
,
H.
Lu
,
Z.
Zhang
,
X.
Li
,
X.
Yang
, and
Y.
Tu
, “
Effect of block number and weight fraction on the structure and properties of poly(butylene terephthalate)-block-poly(tetramethylene oxide) multiblock copolymers
,”
Macromolecules
54
,
2703
2710
(
2021
).
17.
Apostolov
,
A. A.
, and
S.
Fakirov
, “
Effect of the block length on the deformation behavior of polyether esters as revealed by small-angle X-ray scattering
,”
J. Macromol. Sci., Part B: Phys.
31
,
329
355
(
1992
).
18.
Schmidt
,
A.
,
W. S.
Veeman
,
V. M.
Litvinov
, and
W.
Gabriëlse
, “
NMR investigations of in-situ stretched block copolymers of poly (butylene terephthalate) and poly (tetramethylene oxide)
,”
Macromolecules
31
,
1652
1660
(
1998
).
19.
Flory
,
P. J.
, “
Theory of crystallization in copolymers
,”
Trans. Faraday Soc.
51
,
848
857
(
1955
).
20.
Zhang
,
J.
,
R.
Deubler
,
M.
Hartlieb
,
L.
Martin
,
J.
Tanaka
,
E.
Patyukova
,
P. D.
Topham
,
F. H.
Schacher
, and
S.
Perrier
, “
Evolution of microphase separation with variations of segments of sequence-controlled multiblock copolymers
,”
Macromolecules
50
,
7380
7387
(
2017
).
21.
Nébouy
,
M.
,
J.
Morthomas
,
C.
Fusco
,
G. P.
Baeza
, and
L.
Chazeau
, “
Coarse-Grained molecular dynamics modeling of segmented block copolymers: Impact of the chain architecture on crystallization and morphology
,”
Macromolecules
53
,
3847
3860
(
2020
).
22.
Ryan
,
A. J.
,
W.
Bras
,
G. R.
Mant
, and
G. E.
Derbyshire
, “
A direct method to determine the degree of crystallinity and lamellar thickness of polymers: Application to polyethylene
,”
Polymer
35
,
4537
4544
(
1994
).
23.
Jang
,
J.
, and
J.
Won
, “
Crystallisation and phase behaviour of poly (butylene terephthalate)/polyarylate blends
,”
Polymer
39
,
4335
4342
(
1998
).
24.
Hopfe
,
I.
,
G.
Pompe
,
K.-J.
Eichhorn
, and
L.
Häußler
, “
FTIR spectroscopy of PC/PBT melt blends: Influence of crystallite morphology and copolyester content
,”
J. Mol. Struct.
349
,
443
446
(
1995
).
25.
He
,
Y.
, and
Y.
Inoue
, “
Novel FTIR method for determining the crystallinity of poly (ɛ-caprolactone)
,”
Polym. Int.
49
,
623
626
(
2000
).
26.
Frensdorff
,
H. K.
, “
Block-frequency distribution of copolymers
,”
Macromolecules
4
,
369
375
(
1971
).
27.
Deschamps
,
A. A.
,
D. W.
Grijpma
, and
J.
Feijen
, “
Poly(ethylene oxide)/poly(butylene terephthalate) segmented block copolymers: The effect of copolymer composition on physical properties and degradation behavior
,”
Polymer
42
,
9335
9345
(
2001
).
28.
Boussias
,
C. M.
,
R. H.
Peters
, and
R. H.
Still
, “
Copolyester studies. V. Preparation and characterization of tetramethylene terephthalate-poly (tetramethylene oxide) random block copolymers
,”
J. Appl. Polym. Sci.
25
,
855
867
(
1980
).
29.
Van Hutten
,
P. F.
,
R. M.
Mangnus
, and
R. J.
Gaymans
, “
Segmented copolymers with polyesteramide units of uniform length: Structure analysis
,”
Polymer
34
,
4193
4202
(
1993
).
30.
Fakirov
,
S.
,
A. A.
Apostolov
,
P.
Boeseke
, and
H. G.
Zachmann
, “
Structure of segmented poly (ether ester) s as revealed by synchrotron radiation
,”
J. Macromol. Sci., Part B: Phys.
29
,
379
395
(
1990
).
31.
Baeza
,
G. P.
, “
The reinforcement effect in well-defined segmented copolymers: Counting the topological constraints at the mesoscopic scale
,”
Macromolecules
51
,
1957
1966
(
2018
).
32.
Zhu
,
P.
,
X.
Dong
, and
D.
Wang
, “
Strain-induced crystallization of segmented copolymers: Deviation from the classic deformation mechanism
,”
Macromolecules
50
,
3911
3921
(
2017
).
33.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000373 for additional details on the FTIR, DSC, DMTA, and tensile tests, as well as further details on the statistical modeling and on the Neo-Hookean analysis of the stress-strain curves.

Supplementary Material

You do not currently have access to this content.