We use Brownian dynamics (BD) simulations and single molecule experiments to investigate the influence of topological constraints and hydrodynamic interactions on the dynamics and rheology of solutions of ring-linear polymer blends at the overlap concentration. We find agreement between simulation and experiment in which rings in solution blends exhibit large conformational fluctuations. A subpopulation of rings shows extension overshoots in the startup of the flow, and other populations display tumbling and tank-treading at the steady state. Ring polymer fluctuations increase with the blend fraction of linear polymers and are peaked at a ring Weissenberg number WiR1.5. On the contrary, linear and ring polymers in pure solutions show a peak in fluctuations at the critical coil-stretch Weissenberg number Wi=0.5. BD simulations show that extension overshoots on the startup of the flow are due to flow-induced intermolecular ring-linear polymer hooks, whereas fluctuations at the steady state are dominated by intermolecular hydrodynamic interactions (HIs). This is supported by simulations of bidisperse linear polymer solution blends, which show similar trends in conformational dynamics between rings and linear polymers with a matched contour length. Compared to BD simulations, single molecule experiments show quantitatively larger fluctuations, which could arise because experiments are performed on higher molecular weight polymers with stronger topological constraints. To this end, we have advanced the understanding of the effects of topological interactions and intermolecular HIs on the dynamics of semidilute ring-linear polymer blend solutions.

1.
Rubinstein
,
M.
, “
Dynamics of ring polymers in the presence of fixed obstacles
,”
Phys. Rev. Lett.
57
,
3023
3026
(
1986
).
2.
McLeish
,
T.
, “
Polymers without beginning or end
,”
Science
297
,
2005
2006
(
2002
).
3.
Kaitz
,
J. A.
,
C. E.
Diesendruck
, and
J. S.
Moore
, “
End group characterization of poly (phthalaldehyde): Surprising discovery of a reversible, cationic macrocyclization mechanism
,”
J. Am. Chem. Soc.
135
,
12755
12761
(
2013
).
4.
Lloyd
,
E. M.
,
H.
Lopez Hernandez
,
A. M.
Feinberg
,
M.
Yourdkhani
,
E. K.
Zen
,
E. B.
Mejia
,
N. R.
Sottos
,
J. S.
Moore
, and
S. R.
White
, “
Fully recyclable metastable polymers and composites
,”
Chem. Mater.
31
,
398
406
(
2018
).
5.
Taanman
,
J.-W.
, “
The mitochondrial genome: Structure, transcription, translation and replication
,”
Biochim. Biophys. Acta
1410
,
103
123
(
1999
).
6.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
New York
,
1988
), Vol.
73
.
7.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
), Vol.
23
.
8.
Kapnistos
,
M.
,
M.
Lang
,
D.
Vlassopoulos
,
W.
Pyckhout-Hintzen
,
D.
Richter
,
D.
Cho
,
T.
Chang
, and
M.
Rubinstein
, “
Unexpected power-law stress relaxation of entangled ring polymers
,”
Nat. Mater.
7
,
997
1002
(
2008
).
9.
Halverson
,
J. D.
,
G. S.
Grest
,
A. Y.
Grosberg
, and
K.
Kremer
, “
Rheology of ring polymer melts: From linear contaminants to ring-linear blends
,”
Phys. Rev. Lett.
108
,
038301
(
2012
).
10.
Ge
,
T.
,
S.
Panyukov
, and
M.
Rubinstein
, “
Self-similar conformations and dynamics in entangled melts and solutions of nonconcatenated ring polymers
,”
Macromolecules
49
,
708
722
(
2016
).
11.
Doi
,
Y.
,
K.
Matsubara
,
Y.
Ohta
,
T.
Nakano
,
D.
Kawaguchi
,
Y.
Takahashi
,
A.
Takano
, and
Y.
Matsushita
, “
Melt rheology of ring polystyrenes with ultrahigh purity
,”
Macromolecules
48
,
3140
3147
(
2015
).
12.
Pasquino
,
R.
,
T. C.
Vasilakopoulos
,
Y. C.
Jeong
,
H.
Lee
,
S.
Rogers
,
G.
Sakellariou
,
J.
Allgaier
,
A.
Takano
,
A. R.
Brás
,
T.
Chang
,
S.
Gooßen
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
,
N.
Hadjichristidis
,
D.
Richter
,
M.
Rubinstein
, and
D.
Vlassopoulos
, “
Viscosity of ring polymer melts
,”
ACS Macro Lett.
2
,
874
878
(
2013
).
13.
Tsalikis
,
D. G.
, and
V. G.
Mavrantzas
, “
Threading of ring poly (ethylene oxide) molecules by linear chains in the melt
,”
ACS Macro Lett.
3
,
763
766
(
2014
).
14.
Huang
,
Q.
,
J.
Ahn
,
D.
Parisi
,
T.
Chang
,
O.
Hassager
,
S.
Panyukov
,
M.
Rubinstein
, and
D.
Vlassopoulos
, “
Unexpected stretching of entangled ring macromolecules
,”
Phys. Rev. Lett.
122
,
208001
(
2019
).
15.
O’Connor
,
T. C.
,
T.
Ge
,
M.
Rubinstein
, and
G. S.
Grest
, “
Topological linking drives anomalous thickening of ring polymers in weak extensional flows
,”
Phys. Rev. Lett.
124
,
027801
(
2020
).
16.
Tsalikis
,
D. G.
,
V. G.
Mavrantzas
, and
D.
Vlassopoulos
, “
Analysis of slow modes in ring polymers: Threading of rings controls long-time relaxation
,”
ACS Macro Lett.
5
,
755
760
(
2016
).
17.
Tsamopoulos
,
A. J.
,
A. F.
Katsarou
,
D. G.
Tsalikis
, and
V. G.
Mavrantzas
, “
Shear rheology of unentangled and marginally entangled ring polymer melts from large-scale nonequilibrium molecular dynamics simulations
,”
Polymers
11
,
1194
(
2019
).
18.
Jeong
,
S. H.
,
S.
Cho
,
E. J.
Roh
,
T. Y.
Ha
,
J. M.
Kim
, and
C.
Baig
, “
Intrinsic surface characteristics and dynamic mechanisms of ring polymers in solution and melt under shear flow
,”
Macromolecules
53
,
10051
10060
(
2020
).
19.
Borger
,
A.
,
W.
Wang
,
T. C.
O’Connor
,
T.
Ge
,
G. S.
Grest
,
G. V.
Jensen
,
J.
Ahn
,
T.
Chang
,
O.
Hassager
,
K.
Mortensen
,
D.
Vlassopoulos
, and
Q.
Huang
, “
Threading–unthreading transition of linear-ring polymer blends in extensional flow
,”
ACS Macro Lett.
9
,
1452
1457
(
2020
).
20.
Mai
,
D. J.
,
A.
Saadat
,
B.
Khomami
, and
C. M.
Schroeder
, “
Stretching dynamics of single comb polymers in extensional flow
,”
Macromolecules
51
,
1507
1517
(
2018
).
21.
Schroeder
,
C. M.
, “
Single polymer dynamics for molecular rheology
,”
J. Rheol.
62
,
371
403
(
2018
).
22.
Robertson
,
R. M.
,
S.
Laib
, and
D. E.
Smith
, “
Diffusion of isolated dna molecules: Dependence on length and topology
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
7310
7314
(
2006
).
23.
Jagodzinski
,
O.
,
E.
Eisenriegler
, and
K.
Kremer
, “
Universal shape properties of open and closed polymer chains: Renormalization group analysis and Monte Carlo experiments
,”
J. Phys. I
2
,
2243
2279
(
1992
).
24.
Hegde
,
G. A.
,
J.-F.
Chang
,
Y.-L.
Chen
, and
R.
Khare
, “
Conformation and diffusion behavior of ring polymers in solution: A comparison between molecular dynamics, multiparticle collision dynamics, and lattice Boltzmann simulations
,”
J. Chem. Phys.
135
,
184901
(
2011
).
25.
Narros
,
A.
,
A. J.
Moreno
, and
C. N.
Likos
, “
Effects of knots on ring polymers in solvents of varying quality
,”
Macromolecules
46
,
3654
3668
(
2013
).
26.
Li
,
Y.
,
K.-W.
Hsiao
,
C. A.
Brockman
,
D. Y.
Yates
,
R. M.
Robertson-Anderson
,
J. A.
Kornfield
,
M. J.
San Francisco
,
C. M.
Schroeder
, and
G. B.
McKenna
, “
When ends meet: Circular DNA stretches differently in elongational flows
,”
Macromolecules
48
,
5997
6001
(
2015
).
27.
Hsiao
,
K.-W.
,
C. M.
Schroeder
, and
C. E.
Sing
, “
Ring polymer dynamics are governed by a coupling between architecture and hydrodynamic interactions
,”
Macromolecules
49
,
1961
1971
(
2016
).
28.
Schroeder
,
C. M.
,
R. E.
Teixeira
,
E. S.
Shaqfeh
, and
S.
Chu
, “
Characteristic periodic motion of polymers in shear flow
,”
Phys. Rev. Lett.
95
,
018301
(
2005
).
29.
Tu
,
M. Q.
,
M.
Lee
,
R. M.
Robertson-Anderson
, and
C. M.
Schroeder
, “
Direct observation of ring polymer dynamics in the flow-gradient plane of shear flow
,”
Macromolecules
53
,
9406
9419
(
2020
).
30.
Chen
,
W.
,
J.
Chen
, and
L.
An
, “
Tumbling and tank-treading dynamics of individual ring polymers in shear flow
,”
Soft Matter
9
,
4312
4318
(
2013
).
31.
Liebetreu
,
M.
,
M.
Ripoll
, and
C. N.
Likos
, “
Trefoil knot hydrodynamic delocalization on sheared ring polymers
,”
ACS Macro Lett.
7
,
447
452
(
2018
).
32.
Young
,
C. D.
,
J. R.
Qian
,
M.
Marvin
, and
C. E.
Sing
, “
Ring polymer dynamics and tumbling-stretch transitions in planar mixed flows
,”
Phys. Rev. E
99
,
062502
(
2019
).
33.
Tsalikis
,
D. G.
,
T. S.
Alexiou
,
P. V.
Alatas
, and
V. G.
Mavrantzas
, “
Conformation and diffusivity of ring and linear polyethylene oxide in aqueous solution: Molecular topology dependent concentration effects and comparison with experimental data
,”
Macromol. Theory Simul.
29
,
2000016
(
2020
).
34.
Robertson
,
R. M.
, and
D. E.
Smith
, “
Self-diffusion of entangled linear and circular dna molecules: Dependence on length and concentration
,”
Macromolecules
40
,
3373
3377
(
2007
).
35.
Chapman
,
C. D.
,
S.
Shanbhag
,
D. E.
Smith
, and
R. M.
Robertson-Anderson
, “
Complex effects of molecular topology on diffusion in entangled biopolymer blends
,”
Soft Matter
8
,
9177
9182
(
2012
).
36.
Zhou
,
Y.
, and
C. M.
Schroeder
, “
Dynamically heterogeneous relaxation of entangled polymer chains
,”
Phys. Rev. Lett.
120
,
267801
(
2018
).
37.
Pan
,
S.
,
D. A.
Nguyen
,
T.
Sridhar
,
P.
Sunthar
, and
J. R.
Prakash
, “
Universal solvent quality crossover of the zero shear rate viscosity of semidilute DNA solutions
,”
J. Rheol.
58
,
339
368
(
2014
).
38.
Zhou
,
Y.
,
K.-W.
Hsiao
,
K. E.
Regan
,
D.
Kong
,
G. B.
McKenna
,
R. M.
Robertson-Anderson
, and
C. M.
Schroeder
, “
Effect of molecular architecture on ring polymer dynamics in semidilute linear polymer solutions
,”
Nat. Commun.
10
,
001753
(
2019
).
39.
Hsiao
,
K.-W.
,
C.
Sasmal
,
J.
Ravi Prakash
, and
C. M.
Schroeder
, “
Direct observation of dna dynamics in semidilute solutions in extensional flow
,”
J. Rheol.
61
,
151
167
(
2017
).
40.
Sasmal
,
C.
,
K.-W.
Hsiao
,
C. M.
Schroeder
, and
J.
Ravi Prakash
, “
Parameter-free prediction of dna dynamics in planar extensional flow of semidilute solutions
,”
J. Rheol.
61
,
169
186
(
2017
).
41.
Stoltz
,
C.
,
J. J.
de Pablo
, and
M. D.
Graham
, “
Concentration dependence of shear and extensional rheology of polymer solutions: Brownian dynamics simulations
,”
J. Rheol.
50
,
137
167
(
2006
).
42.
Young
,
C. D.
, and
C. E.
Sing
, “
Simulation of semidilute polymer solutions in planar extensional flow via conformationally averaged Brownian noise
,”
J. Chem. Phys.
151
,
124907
(
2019
).
43.
Schroeder
,
C. M.
,
E. S.
Shaqfeh
, and
S.
Chu
, “
Effect of hydrodynamic interactions on dna dynamics in extensional flow: Simulation and single molecule experiment
,”
Macromolecules
37
,
9242
9256
(
2004
).
44.
Padding
,
J.
, and
A.
Louis
, “
Hydrodynamic interactions and Brownian forces in colloidal suspensions: Coarse-graining over time and length scales
,”
Phys. Rev. E
74
,
031402
(
2006
).
45.
Groot
,
R. D.
, and
P. B.
Warren
, “
Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation
,”
J. Chem. Phys.
107
,
4423
4435
(
1997
).
46.
Stoyanov
,
S. D.
, and
R. D.
Groot
, “
From molecular dynamics to hydrodynamics: A novel Galilean invariant thermostat
,”
J. Chem. Phys.
122
,
114112
(
2005
).
47.
Zhou
,
Y.
,
C. D.
Young
,
K. E.
Regan
,
M.
Lee
,
S.
Banik
,
D.
Kong
,
G. B.
McKenna
,
R. M.
Robertson-Anderson
,
C. E.
Sing
, and
C. M.
Schroeder
, “
Dynamics and rheology of ring-linear blend semidilute solutions in extensional flow. Part II: Single molecule experiments
,”
J. Rheol.
65
,
729
744
(
2021
).
48.
Weeks
,
J. D.
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
49.
Kremer
,
K.
, and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
,
5057
5086
(
1990
).
50.
Rotne
,
J.
, and
S.
Prager
, “
Variational treatment of hydrodynamic interaction in polymers
,”
J. Chem. Phys.
50
,
4831
4837
(
1969
).
51.
Yamakawa
,
H.
, “
Transport properties of polymer chains in dilute solution: Hydrodynamic interaction
,”
J. Chem. Phys.
53
,
436
443
(
1970
).
52.
Ermak
,
D. L.
, and
J.
McCammon
, “
Brownian dynamics with hydrodynamic interactions
,”
J. Chem. Phys.
69
,
1352
1360
(
1978
).
53.
Fixman
,
M.
, “
Construction of Langevin forces in the simulation of hydrodynamic interaction
,”
Macromolecules
19
,
1204
1207
(
1986
).
54.
Geyer
,
T.
, and
U.
Winter
, “
An O(N2) approximation for hydrodynamic interactions in Brownian dynamics simulations
,”
J. Chem. Phys.
130
,
114905
(
2009
).
55.
Ando
,
T.
,
E.
Chow
,
Y.
Saad
, and
J.
Skolnick
, “
Krylov subspace methods for computing hydrodynamic interactions in Brownian dynamics simulations
,”
J. Chem. Phys.
137
,
064106
(
2012
).
56.
Miao
,
L.
,
C. D.
Young
, and
C. E.
Sing
, “
An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics
,”
J. Chem. Phys.
147
,
024904
(
2017
).
57.
Young
,
C. D.
,
M.
Marvin
, and
C. E.
Sing
, “
Conformationally averaged iterative Brownian dynamics simulations of semidilute polymer solutions
,”
J. Chem. Phys.
149
,
174904
(
2018
).
58.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000221 for we include movies showing characteristic examples of (1) ring-linear hooking at WiR=1.8,fR=0.02, (2) ring tank-treading at WiR=3.2,fR=0.50, and (3) short linear polymer tumbling at WiS=3.5,fS=0.50.
59.
Kraynik
,
A.
, and
D.
Reinelt
, “
Extensional motions of spatially periodic lattices
,”
Int. J. Multiphase Flow
18
,
1045
1059
(
1992
).
60.
Todd
,
B.
, and
P. J.
Daivis
, “
Nonequilibrium molecular dynamics simulations of planar elongational flow with spatially and temporally periodic boundary conditions
,”
Phys. Rev. Lett.
81
,
1118
1121
(
1998
).
61.
Sefiddashti
,
M. H. N.
,
B. J.
Edwards
, and
B.
Khomami
, “
Configurational microphase separation in elongational flow of an entangled polymer liquid
,”
Phys. Rev. Lett.
121
,
247802
(
2018
).
62.
Beenakker
,
C.
, “
Ewald sum of the Rotne–Prager tensor
,”
J. Chem. Phys.
85
,
1581
1582
(
1986
).
63.
Jain
,
A.
,
P.
Sunthar
,
B.
Dünweg
, and
J. R.
Prakash
, “
Optimization of a Brownian-dynamics algorithm for semidilute polymer solutions
,”
Phys. Rev. E
85
,
066703
(
2012
).
64.
Dobson
,
M.
,
I.
Fox
, and
A.
Saracino
, “
Cell list algorithms for nonequilibrium molecular dynamics
,”
J. Comput. Phys.
315
,
211
220
(
2016
).
65.
Zhou
,
Y.
, and
C. M.
Schroeder
, “
Transient and average unsteady dynamics of single polymers in large-amplitude oscillatory extension
,”
Macromolecules
49
,
8018
8030
(
2016
).
66.
Dinic
,
J.
, and
V.
Sharma
, “
Flexibility, extensibility, and ratio of Kuhn length to packing length govern the pinching dynamics, coil-stretch transition, and rheology of polymer solutions
,”
Macromolecules
53
,
4821
4835
(
2020
).
67.
Marko
,
J. F.
, and
E. D.
Siggia
, “
Stretching dna
,”
Macromolecules
28
,
8759
8770
(
1995
).
68.
Underhill
,
P. T.
, and
P. S.
Doyle
, “
Alternative spring force law for bead-spring chain models of the worm-like chain
,”
J. Rheol.
50
,
513
529
(
2006
).
69.
Saadat
,
A.
, and
B.
Khomami
, “
A new bead-spring model for simulation of semi-flexible macromolecules
,”
J. Chem. Phys.
145
,
204902
(
2016
).
70.
Kumar
,
S.
, and
R. G.
Larson
, “
Brownian dynamics simulations of flexible polymers with spring–spring repulsions
,”
J. Chem. Phys.
114
,
6937
6941
(
2001
).
71.
Likhtman
,
A. E.
, “
Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-echo, rheology, and diffusion
,”
Macromolecules
38
,
6128
6139
(
2005
).
72.
Uneyama
,
T.
, and
Y.
Masubuchi
, “
Multi-chain slip-spring model for entangled polymer dynamics
,”
J. Chem. Phys.
137
,
154902
(
2012
).
73.
Ramírez-Hernández
,
A.
,
B. L.
Peters
,
M.
Andreev
,
J. D.
Schieber
, and
J. J.
de Pablo
, “
A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology
,”
J. Chem. Phys.
143
,
243147
(
2015
).
74.
Fiore
,
A. M.
,
F.
Balboa Usabiaga
,
A.
Donev
, and
J. W.
Swan
, “
Rapid sampling of stochastic displacements in Brownian dynamics simulations
,”
J. Chem. Phys.
146
,
124116
(
2017
).
75.
Liu
,
X.
, and
E.
Chow
, “Large-scale hydrodynamic Brownian simulations on multicore and manycore architectures,” in Proceedings of the 2014 IEEE 28th International Parallel and Distributed Processing Symposium (IEEE, New York, 2014), pp. 563–572.
76.
Saadat
,
A.
, and
B.
Khomami
, “
Matrix-free Brownian dynamics simulation technique for semidilute polymeric solutions
,”
Phys. Rev. E
92
,
033307
(
2015
).
77.
Patel
,
S. F.
,
C. D.
Young
,
C. E.
Sing
, and
C. M.
Schroeder
, “
Nonmonotonic dependence of comb polymer relaxation on branch density in semidilute solutions of linear polymers
,”
Phys. Rev. Fluids
5
,
121301
(
2020
).
78.
Arratia
,
P. E.
,
C.
Thomas
,
J.
Diorio
, and
J. P.
Gollub
, “
Elastic instabilities of polymer solutions in cross-channel flow
,”
Phys. Rev. Lett.
96
,
144502
(
2006
).
79.
Haward
,
S. J.
,
G. H.
McKinley
, and
A. Q.
Shen
, “
Elastic instabilities in planar elongational flow of monodisperse polymer solutions
,”
Sci. Rep.
6
,
033029
(
2016
).
80.
Cruz
,
F.
, and
M.
Alves
, “
Characterization of superimposed instabilities in the planar extensional flow of viscoelastic fluids
,”
Phys. Rev. Fluids
3
,
113301
(
2018
).
81.
Sousa
,
P.
,
F.
Pinho
,
M.
Oliveira
, and
M.
Alves
, “
Purely elastic flow instabilities in microscale cross-slot devices
,”
Soft matter
11
,
8856
8862
(
2015
).
82.
Cruz
,
F.
,
R.
Poole
,
A.
Afonso
,
F.
Pinho
,
P.
Oliveira
, and
M.
Alves
, “
Influence of channel aspect ratio on the onset of purely-elastic flow instabilities in three-dimensional planar cross-slots
,”
J. Non-Newtonian Fluid Mech.
227
,
65
79
(
2016
).
83.
Delong
,
S.
,
F. B.
Usabiaga
,
R.
Delgado-Buscalioni
,
B. E.
Griffith
, and
A.
Donev
, “
Brownian dynamics without Green’s functions
,”
J. Chem. Phys.
140
,
134110
(
2014
).
84.
Zhao
,
X.
,
J.
Li
,
X.
Jiang
,
D.
Karpeev
,
O.
Heinonen
,
B.
Smith
,
J. P.
Hernandez-Ortiz
, and
J. J.
de Pablo
, “
Parallel O (N) Stokes’ solver towards scalable Brownian dynamics of hydrodynamically interacting objects in general geometries
,”
J. Chem. Phys.
146
,
244114
(
2017
).
85.
de Gennes
,
P.-G.
, “
Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients
,”
J. Chem. Phys.
60
,
5030
5042
(
1974
).
86.
Perkins
,
T. T.
,
D. E.
Smith
, and
S.
Chu
, “
Single polymer dynamics in an elongational flow
,”
Science
276
,
2016
2021
(
1997
).
87.
Larson
,
R.
,
H.
Hu
,
D.
Smith
, and
S.
Chu
, “
Brownian dynamics simulations of a DNA molecule in an extensional flow field
,”
J. Rheol.
43
,
267
304
(
1999
).
88.
Shaqfeh
,
E. S.
, “
Purely elastic instabilities in viscometric flows
,”
Annu. Rev. Fluid Mech.
28
,
129
185
(
1996
).
89.
Pakdel
,
P.
, and
G. H.
McKinley
, “
Elastic instability and curved streamlines
,”
Phys. Rev. Lett.
77
,
2459
2462
(
1996
).
90.
Poole
,
R.
,
M.
Alves
, and
P. J.
Oliveira
, “
Purely elastic flow asymmetries
,”
Phys. Rev. Lett.
99
,
164503
(
2007
).
91.
Clasen
,
C.
,
J.
Plog
,
W.-M.
Kulicke
,
M.
Owens
,
C.
Macosko
,
L.
Scriven
,
M.
Verani
, and
G. H.
McKinley
, “
How dilute are dilute solutions in extensional flows?
,”
J. Rheol.
50
,
849
881
(
2006
).
92.
Dinic
,
J.
,
M.
Biagioli
, and
V.
Sharma
, “
Pinch-off dynamics and extensional relaxation times of intrinsically semi-dilute polymer solutions characterized by dripping-onto-substrate rheometry
,”
J. Polym. Sci., Part B: Polym. Phys.
55
,
1692
1704
(
2017
).
93.
Prabhakar
,
R.
,
C.
Sasmal
,
D. A.
Nguyen
,
T.
Sridhar
, and
J. R.
Prakash
, “
Effect of stretching-induced changes in hydrodynamic screening on coil-stretch hysteresis of unentangled polymer solutions
,”
Phys. Rev. Fluids
2
,
011301
(
2017
).
94.
Prabhakar
,
R.
,
S.
Gadkari
,
T.
Gopesh
, and
M.
Shaw
, “
Influence of stretching induced self-concentration and self-dilution on coil-stretch hysteresis and capillary thinning of unentangled polymer solutions
,”
J. Rheol.
60
,
345
366
(
2016
).
95.
Cromer
,
M.
,
G. H.
Fredrickson
, and
L.
Gary Leal
, “
Concentration fluctuations in polymer solutions under mixed flow
,”
J. Rheol.
61
,
711
730
(
2017
).
96.
Corona
,
P. T.
,
N.
Ruocco
,
K. M.
Weigandt
,
L. G.
Leal
, and
M. E.
Helgeson
, “
Probing flow-induced nanostructure of complex fluids in arbitrary 2D flows using a fluidic four-roll mill (fform)
,”
Sci. Rep.
8
,
1
18
(
2018
).
97.
Hunt
,
T. A.
,
S.
Bernardi
, and
B.
Todd
, “
A new algorithm for extended nonequilibrium molecular dynamics simulations of mixed flow
,”
J. Chem. Phys.
133
,
154116
(
2010
).
98.
Jain
,
A.
,
C.
Sasmal
,
R.
Hartkamp
,
B. D.
Todd
, and
J. R.
Prakash
, “
Brownian dynamics simulations of planar mixed flows of polymer solutions at finite concentrations
,”
Chem. Eng. Sci.
121
,
245
257
(
2015
).

Supplementary Material

You do not currently have access to this content.