We study the dynamics of nanoparticles in semidilute solutions of ring and linear polymers using hybrid molecular dynamics–multiparticle collision dynamics simulations. The dynamics of the monomers, the polymer centers-of-mass, and the nanoparticles coincide for these two architectures for solutions of the same monomer concentration. The long time diffusivities of the nanoparticles follow the predictions of a polymer coupling theory [Cai et al., Macromolecules 44, 7853–7863 (2011)], suggesting that nanoparticle dynamics are coupled to segmental relaxations for both polymer architectures examined here. At intermediate time scales, the nanoparticle dynamics are characterized by subdiffusive exponents, which markedly deviate from coupling theory and closely follow those of the polymers. Instead, the nanoparticle dynamics are strongly coupled to the polymer center-of-mass motions for both architectures, rather than to their segmental dynamics. The presence of ring concatenations does not affect the long-time diffusivity of the nanoparticles but leads to a slight decrease in the subdiffusive exponents of the nanoparticles and the polymer center-of-mass.

1.
Hanemann
,
T.
, and
D. V.
Szabó
, “
Polymer-nanoparticle composites: From synthesis to modern applications
,”
Materials
3
,
3468
3517
(
2010
).
2.
Chen
,
Q.
,
S.
Gong
,
J.
Moll
,
D.
Zhao
,
S. K.
Kumar
, and
R. H.
Colby
, “
Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network
,”
ACS Macro Lett.
4
,
398
402
(
2015
).
3.
Sarkar
,
B.
, and
P.
Alexandridis
, “
Block copolymer-nanoparticle composites: Structure, functional properties, and processing
,”
Prog. Polym. Sci.
40
,
33
62
(
2015
).
4.
Shamsijazeyi
,
H.
,
C. A.
Miller
,
M. S.
Wong
,
J. M.
Tour
, and
R.
Verduzco
, “
Polymer-coated nanoparticles for enhanced oil recovery
,”
J. Appl. Polym. Sci.
131
,
040576
(
2014
).
5.
Soppimath
,
K. S.
,
T. M.
Aminabhavi
,
A. R.
Kulkarni
, and
W. E.
Rudzinski
, “
Biodegradable polymeric nanoparticles as drug delivery devices
,”
J. Control. Release
70
,
1
20
(
2001
).
6.
Liechty
,
W. B.
,
D. R.
Kryscio
,
B. V.
Slaughter
, and
N. A.
Peppas
, “
Polymers for drug delivery systems
,”
Annu. Rev. Chem. Biomol. Eng.
1
,
149
173
(
2010
).
7.
Tang
,
L.
,
X.
Yang
,
Q.
Yin
,
K.
Cai
,
H.
Wang
,
I.
Chaudhury
,
C.
Yao
,
Q.
Zhou
,
M.
Kwon
,
J. A.
Hartman
,
I. T.
Dobrucki
,
L. W.
Dobrucki
,
L. B.
Borst
,
S.
Lezmi
,
W. G.
Helferich
,
A. L.
Ferguson
,
T. M.
Fan
, and
J.
Cheng
, “
Investigating the optimal size of anticancer nanomedicine
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
15344
15349
(
2014
).
8.
Blanco
,
E.
,
H.
Shen
, and
M.
Ferrari
, “
Principles of nanoparticle design for overcoming biological barriers to drug delivery
,”
Nat. Biotechnol.
33
,
941
951
(
2015
).
9.
Mason
,
T. G.
, and
D. A.
Weitz
, “
Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids
,”
Phys. Rev. Lett.
74
,
1250
(
1995
).
10.
Mason
,
T. G.
,
T.
Gisler
,
K.
Kroy
,
E.
Frey
, and
D. A.
Weitz
, “
Rheology of F-actin solutions determined from thermally driven tracer motion
,”
J. Rheol.
44
,
917
927
(
2000
).
11.
Ye
,
X.
,
P.
Tong
, and
L. J.
Fetters
, “
Transport of probe particles in semidilute polymer solutions
,”
Macromolecules
31
,
5785
5793
(
1998
).
12.
Cheng
,
Y.
,
R. K.
Prud’homme
, and
J. L.
Thomas
, “
Diffusion of mesoscopic probes in aqueous polymer solutions measured by fluorescence recovery after photobleaching
,”
Macromolecules
35
,
8111
8121
(
2002
).
13.
Tuteja
,
A.
,
M. E.
Mackay
,
S.
Narayanan
,
S.
Asokan
, and
M. S.
Wong
, “
Breakdown of the continuum Stokes-Einstein relation for nanoparticle diffusion
,”
Nano Lett.
7
,
1276
1281
(
2007
).
14.
Kohli
,
I.
, and
A.
Mukhopadhyay
, “
Diffusion of nanoparticles in semidilute polymer solutions: Effect of different length scales
,”
Macromolecules
45
,
6143
6149
(
2012
).
15.
Poling-Skutvik
,
R.
,
R.
Krishnamoorti
, and
J. C.
Conrad
, “
Size-dependent dynamics of nanoparticles in unentangled polyelectrolyte solutions
,”
ACS Macro Lett.
4
,
1169
1173
(
2015
).
16.
Cai
,
L.-H.
,
S.
Panyukov
, and
M.
Rubinstein
, “
Mobility of nonsticky nanoparticles in polymer liquids
,”
Macromolecules
44
,
7853
7863
(
2011
).
17.
Egorov
,
S. A.
, “
Anomalous nanoparticle diffusion in polymer solutions and melts: A mode-coupling theory study
,”
J. Chem. Phys.
134
,
084903
(
2011
).
18.
Dell
,
Z. E.
, and
K. S.
Schweizer
, “
Theory of localization and activated hopping of nanoparticles in cross-linked networks and entangled polymer melts
,”
Macromolecules
47
,
405
414
(
2014
).
19.
Cai
,
L.-H.
,
S.
Panyukov
, and
M.
Rubinstein
, “
Hopping diffusion of nanoparticles in polymer matrices
,”
Macromolecules
48
,
847
862
(
2015
).
20.
Dong
,
Y.
,
X.
Feng
,
N.
Zhao
, and
Z.
Hou
, “
Diffusion of nanoparticles in semidilute polymer solutions: A mode-coupling theory study
,”
J. Chem. Phys.
143
,
024903
(
2015
).
21.
Kalathi
,
J. T.
,
G. S.
Grest
, and
S. K.
Kumar
, “
Universal viscosity behavior of polymer nanocomposites
,”
Phys. Rev. Lett.
109
,
198301
(
2012
).
22.
Kalathi
,
J. T.
,
U.
Yamamoto
,
K. S.
Schweizer
,
G. S.
Grest
, and
S. K.
Kumar
, “
Nanoparticle diffusion in polymer nanocomposites
,”
Phys. Rev. Lett.
112
,
108301
(
2014
).
23.
Chen
,
A.
,
N.
Zhao
, and
Z.
Hou
, “
The effect of hydrodynamic interactions on nanoparticle diffusion in polymer solutions: A multi-particle collision dynamics study
,”
Soft Matter
13
,
8625
8635
(
2017
).
24.
Sorichetti
,
V.
,
V.
Hugouvieux
, and
W.
Kob
, “
Structure and dynamics of a polymer-nanoparticle composite: Effect of nanoparticle size and volume fraction
,”
Macromolecules
51
,
5375
5391
(
2018
).
25.
Chen
,
R.
,
R.
Poling-Skutvik
,
A.
Nikoubashman
,
M. P.
Howard
,
J. C.
Conrad
, and
J. C.
Palmer
, “
Coupling of nanoparticle dynamics to polymer center-of-mass motion in semidilute polymer solutions
,”
Macromolecules
51
,
1865
1872
(
2018
).
26.
Chen
,
R.
,
R.
Poling-Skutvik
,
M. P.
Howard
,
A.
Nikoubashman
,
S. A.
Egorov
,
J. C.
Conrad
, and
J. C.
Palmer
, “
Influence of polymer flexibility on nanoparticle dynamics in semidilute solutions
,”
Soft Matter
15
,
1260
1268
(
2019
).
27.
Brown
,
S.
, and
G.
Szamel
, “
Structure and dynamics of ring polymers
,”
J. Chem. Phys.
108
,
4705
4708
(
1998
).
28.
Gagliardi
,
S.
,
V.
Arrighi
,
A.
Dagger
, and
A.
Semlyen
, “
Conformation of cyclic and linear polydimethylsiloxane in the melt: A small-angle neutron-scattering study
,”
Appl. Phys. A
74
,
s469
s471
(
2002
).
29.
Beaucage
,
G.
, and
A. S.
Kulkarni
, “
Dimensional description of cyclic macromolecules
,”
Macromolecules
43
,
532
537
(
2009
).
30.
Halverson
,
J. D.
,
W. B.
Lee
,
G. S.
Grest
,
A. Y.
Grosberg
, and
K.
Kremer
, “
Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics
,”
J. Chem. Phys.
134
,
204904
(
2011
).
31.
Halverson
,
J. D.
,
W. B.
Lee
,
G. S.
Grest
,
A. Y.
Grosberg
, and
K.
Kremer
, “
Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics
,”
J. Chem. Phys.
134
,
204905
(
2011
).
32.
Ge
,
T.
,
S.
Panyukov
, and
M.
Rubinstein
, “
Self-similar conformations and dynamics in entangled melts and solutions of nonconcatenated ring polymers
,”
Macromolecules
49
,
708
722
(
2016
).
33.
Ge
,
T.
,
J. T.
Kalathi
,
J. D.
Halverson
,
G. S.
Grest
, and
M.
Rubinstein
, “
Nanoparticle motion in entangled melts of linear and nonconcatenated ring polymers
,”
Macromolecules
50
,
1749
1754
(
2017
).
34.
Robertson
,
R. M.
, and
D. E.
Smith
, “
Strong effects of molecular topology on diffusion of entangled DNA molecules
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
4824
4827
(
2007
).
35.
Kapnistos
,
M.
,
M.
Lang
,
D.
Vlassopoulos
,
W.
Pyckhout-Hintzen
,
D.
Richter
,
D.
Cho
,
T.
Chang
, and
M.
Rubinstein
, “
Unexpected power-law stress relaxation of entangled ring polymers
,”
Nat. Mater.
7
,
997
1002
(
2008
).
36.
Rosa
,
A.
,
E.
Orlandini
,
L.
Tubiana
, and
C.
Micheletti
, “
Structure and dynamics of ring polymers: Entanglement effects because of solution density and ring topology
,”
Macromolecules
44
,
8668
8680
(
2011
).
37.
Goossen
,
S.
,
A.
Brás
,
M.
Krutyeva
,
M.
Sharp
,
P.
Falus
,
A.
Feoktystov
,
U.
Gasser
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
, and
D.
Richter
, “
Molecular scale dynamics of large ring polymers
,”
Phys. Rev. Lett.
113
,
168302
(
2014
).
38.
Soh
,
B. W.
,
A. R.
Klotz
,
R. M.
Robertson-Anderson
, and
P. S.
Doyle
, “
Long-lived self-entanglements in ring polymers
,”
Phys. Rev. Lett.
123
,
048002
(
2019
).
39.
Gartner
,
T. E.
,
F. M.
Haque
,
A. M.
Gomi
,
S. M.
Grayson
,
M. J. A.
Hore
, and
A.
Jayaraman
, “
Scaling exponent and effective interactions in linear and cyclic polymer solutions: Theory, simulations, and experiments
,”
Macromolecules
52
,
4579
4589
(
2019
).
40.
Zhou
,
Y.
,
K.-W.
Hsiao
,
K. E.
Regan
,
D.
Kong
,
G. B.
McKenna
,
R. M.
Robertson-Anderson
, and
C. M.
Schroeder
, “
Effect of molecular architecture on ring polymer dynamics in semidilute linear polymer solutions
,”
Nat. Commun.
10
,
001753
(
2019
).
41.
Weiss
,
L. B.
,
C. N.
Likos
, and
A.
Nikoubashman
, “
Spatial demixing of ring and chain polymers in pressure-driven flow
,”
Macromolecules
52
,
7858
7869
(
2019
).
42.
de Gennes
,
P.-G.
, “
Reptation of a polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys.
55
,
572
579
(
1971
).
43.
McLeish
,
T.
, “
Tube theory of entangled polymer dynamics
,”
Adv. Phys.
51
,
1379
1527
(
2002
).
44.
Cates
,
M.
, and
J.
Deutsch
, “
Conjectures on the statistics of ring polymers
,”
J. Phys.
47
,
2121
2128
(
1986
).
45.
Rubinstein
,
M.
, “
Dynamics of ring polymers in the presence of fixed obstacles
,”
Phys. Rev. Lett.
57
,
3023
3026
(
1986
).
46.
Nechaev
,
S.
,
A.
Semenov
, and
M.
Koleva
, “
Dynamics of a polymer chain in an array of obstacles
,”
Physica A
140
,
506
520
(
1987
).
47.
Grosberg
,
A. Y.
,
S. K.
Nechaev
, and
E. I.
Shakhnovich
, “
The role of topological constraints in the kinetics of collapse of macromolecules
,”
J. Phys.
49
,
2095
2100
(
1988
).
48.
Obukhov
,
S. P.
,
M.
Rubinstein
, and
T.
Duke
, “
Dynamics of a ring polymer in a gel
,”
Phys. Rev. Lett.
73
,
1263
1266
(
1994
).
49.
Tsolou
,
G.
,
N.
Stratikis
,
C.
Baig
,
P. S.
Stephanou
, and
V. G.
Mavrantzas
, “
Melt structure and dynamics of unentangled polyethylene rings: Rouse theory, atomistic molecular dynamics simulation, and comparison with the linear analogues
,”
Macromolecules
43
,
10692
10713
(
2010
).
50.
McLeish
,
T.
, “
Polymer dynamics: Floored by the rings
,”
Nat. Mater.
7
,
933
935
(
2008
).
51.
Rauscher
,
P. M.
,
K. S.
Schweizer
,
S. J.
Rowan
, and
J. J.
de Pablo
, “
Thermodynamics and structure of poly[n]catenane melts
,”
Macromolecules
53
,
3390
3408
(
2020
).
52.
Rauscher
,
P. M.
,
K. S.
Schweizer
,
S. J.
Rowan
, and
J. J.
de Pablo
, “
Dynamics of poly[n]catenane melts
,”
J. Chem. Phys.
152
,
214901
(
2020
).
53.
Rauscher
,
P. M.
,
S. J.
Rowan
, and
J. J.
de Pablo
, “
Hydrodynamic interactions in topologically linked ring polymers
,”
Phys. Rev. E
102
,
032502
(
2020
).
54.
Ahmadian Dehaghani
,
Z.
,
I.
Chubak
,
C. N.
Likos
, and
M. R.
Ejtehadi
, “
Effects of topological constraints on linked ring polymers in solvents of varying quality
,”
Soft Matter
16
,
3029
3038
(
2020
).
55.
Ge
,
T.
,
G. S.
Grest
, and
M.
Rubinstein
, “
Nanorheology of entangled polymer melts
,”
Phys. Rev. Lett.
120
,
057801
(
2018
).
56.
Zhou
,
X.
,
Y.
Jiang
,
J.
Chen
,
L.
He
, and
L.
Zhang
, “
Size-dependent nanoparticle dynamics in semiflexible ring polymer nanocomposites
,”
Polymer
131
,
243
251
(
2017
).
57.
Nahali
,
N.
, and
A.
Rosa
, “
Nanoprobe diffusion in entangled polymer solutions: Linear vs unconcatenated ring chains
,”
J. Chem. Phys.
148
,
194902
(
2018
).
58.
Hegde
,
G. A.
,
J.-F.
Chang
,
Y.-L.
Chen
, and
R.
Khare
, “
Conformation and diffusion behavior of ring polymers in solution: A comparison between molecular dynamics, multiparticle collision dynamics, and lattice boltzmann simulations
,”
J. Chem. Phys.
135
,
184901
(
2011
).
59.
Hsiao
,
K.-W.
,
C. M.
Schroeder
, and
C. E.
Sing
, “
Ring polymer dynamics are governed by a coupling between architecture and hydrodynamic interactions
,”
Macromolecules
49
,
1961
1971
(
2016
).
60.
Young
,
C. D.
,
J. R.
Qian
,
M.
Marvin
, and
C. E.
Sing
, “
Ring polymer dynamics and tumbling-stretch transitions in planar mixed flows
,”
Phys. Rev. E
99
,
062502
(
2019
).
61.
Liebetreu
,
M.
, and
C. N.
Likos
, “
Hydrodynamic inflation of ring polymers under shear
,”
Commun. Mater.
1
,
000004
(
2020
).
62.
Malevanets
,
A.
, and
R.
Kapral
, “
Mesoscopic model for solvent dynamics
,”
J. Chem. Phys.
110
,
8605
8613
(
1999
).
63.
Gompper
,
G.
,
T.
Ihle
,
D. M.
Kroll
, and
R. G.
Winkler
, “Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids,” in Adv. Comput. Simul. Approaches Soft Matter Sci. III (Springer, New York, 2009), pp. 1–87.
64.
Howard
,
M. P.
,
A.
Nikoubashman
, and
J. C.
Palmer
, “
Modeling hydrodynamic interactions in soft materials with multiparticle collision dynamics
,”
Curr. Opin. Chem. Eng.
23
,
34
43
(
2019
).
65.
Plimpton
,
S.
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
66.
Kremer
,
K.
, and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
,
5057
5086
(
1990
).
67.
Weeks
,
J. D.
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
68.
Bishop
,
M.
,
M. H.
Kalos
, and
H. L.
Frisch
, “
Molecular dynamics of polymeric systems
,”
J. Chem. Phys.
70
,
1299
1304
(
1979
).
69.
Nikoubashman
,
A.
,
A.
Milchev
, and
K.
Binder
, “
Dynamics of single semiflexible polymers in dilute solution
,”
J. Chem. Phys.
145
,
234903
(
2016
).
70.
Nikoubashman
,
A.
, and
M. P.
Howard
, “
Equilibrium dynamics and shear rheology of semiflexible polymers in solution
,”
Macromolecules
50
,
8279
8289
(
2017
).
71.
Faller
,
R.
,
A.
Kolb
, and
F.
Müller-Plathe
, “
Local chain ordering in amorphous polymer melts: Influence of chain stiffness
,”
Phys. Chem. Chem. Phys.
1
,
2071
2076
(
1999
).
72.
Faller
,
R.
,
F.
Müller-Plathe
, and
A.
Heuer
, “
Local reorientation dynamics of semiflexible polymers in the melt
,”
Macromolecules
33
,
6602
6610
(
2000
).
73.
Faller
,
R.
, and
F.
Müller-Plathe
, “
Chain stiffness intensifies the reptation characteristics of polymer dynamics in the melt
,”
Chem. Phys. Chem.
2
,
180
184
(
2001
).
74.
Fischer
,
J.
,
M.
Lang
, and
J.-U.
Sommer
, “
The formation and structure of olympic gels
,”
J. Chem. Phys.
143
,
243114
(
2015
).
75.
Humphrey
,
W.
,
A.
Dalke
, and
K.
Schulten
, “
VMD—Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
76.
de Gennes
,
P.-G.
,
Scaling Concepts in Polymer Physics
(
Cornell University
,
Ithaca
,
1979
).
77.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
).
78.
Koshy
,
R.
,
T.
Desai
,
P.
Keblinski
,
J.
Hooper
, and
K. S.
Schweizer
, “
Density fluctuation correlation length in polymer fluids
,”
J. Chem. Phys.
119
,
7599
7603
(
2003
).
79.
Sorichetti
,
V.
,
V.
Hugouvieux
, and
W.
Kob
, “
Determining the mesh size of polymer solutions via the pore size distribution
,”
Macromolecules
53
,
2568
2581
(
2020
).
80.
Gelb
,
L. D.
, and
K. E.
Gubbins
, “
Pore size distributions in porous glasses: A computer simulation study
,”
Langmuir
15
,
305
308
(
1999
).
81.
Connolly
,
M. L.
, “
Analytical molecular surface calculation
,”
J. Appl. Crystallogr.
16
,
548
558
(
1983
).
82.
Palmer
,
J. C.
,
J. D.
Moore
,
J. K.
Brennan
, and
K. E.
Gubbins
, “
Simulating local adsorption isotherms in structurally complex porous materials: A direct assessment of the slit pore model
,”
J. Phys. Chem. Lett.
2
,
165
169
(
2011
).
83.
Bhattacharya
,
S.
, and
K. E.
Gubbins
, “
Fast method for computing pore size distributions of model materials
,”
Langmuir
22
,
7726
7731
(
2006
).
84.
Sprakel
,
J.
,
J.
van der Gucht
,
M. A.
Cohen Stuart
, and
N. A. M.
Besseling
, “
Rouse dynamics of colloids bound to polymer networks
,”
Phys. Rev. Lett.
99
,
208301
(
2007
).
85.
Wu
,
Q.
,
P. M.
Rauscher
,
X.
Lang
,
R. J.
Wojtecki
,
J. J.
de Pablo
,
M. J. A.
Hore
, and
S. J.
Rowan
, “
Poly[n]catenanes: Synthesis of molecular interlocked chains
,”
Science
358
,
1434
1439
(
2017
).
86.
Klotz
,
A. R.
,
B. W.
Soh
, and
P. S.
Doyle
, “
Equilibrium structure and deformation response of 2D kinetoplast sheets
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
121
127
(
2020
).
87.
Clayton
,
D. A.
, and
J.
Vinograd
, “
Circular dimer and catenate forms of mitochondrial DNA in human leukaemic leucocytes
,”
Nature
216
,
652
657
(
1067
).
88.
Edwards
,
J. P.
,
W. J.
Wolf
, and
R. H.
Grubbs
, “
The synthesis of cyclic polymers by olefin metathesis: Achievements and challenges
,”
J. Polym. Sci. Part A: Polym. Chem.
57
,
228
242
(
2019
).
89.
Rauscher
,
P. M.
,
S. J.
Rowan
, and
J. J.
de Pablo
, “
Topological effects in isolated poly[n]catenanes: Molecular dynamics simulations and Rouse mode analysis
,”
ACS Macro Lett.
7
,
938
943
(
2018
).
You do not currently have access to this content.