Ring polymers exhibit unique flow properties due to their closed chain topology. Despite recent progress, we have not yet achieved a full understanding of the nonequilibrium flow behavior of rings in nondilute solutions where intermolecular interactions greatly influence chain dynamics. In this work, we directly observe the dynamics of DNA rings in semidilute ring-linear polymer blends using single molecule techniques. We systematically investigate ring polymer relaxation dynamics from high extension and transient and steady-state stretching dynamics in a planar extensional flow for a series of ring-linear blends with varying ring fraction. Our results show multiple molecular subpopulations for ring relaxation in ring-linear blends, as well as large conformational fluctuations for rings in a steady extensional flow, even long after the initial transient stretching process has subsided. We further quantify the magnitude and characteristic time scales of ring conformational fluctuations as a function of blend composition. Interestingly, we find that the magnitude of ring conformational fluctuations follows a nonmonotonic response with increasing ring fraction, first increasing at low ring fraction and then substantially decreasing at large ring fraction in ring-linear blends. A unique set of ring polymer conformations are observed during the transient stretching process, which highlights the prevalence of molecular individualism and supports the notion of complex intermolecular interactions in ring-linear polymer blends. In particular, our results suggest that transient intermolecular structures form in ring-linear blends due to a combination of direct forces due to linear chains threading through open rings and indirect forces due to hydrodynamic interactions; these combined effects lead to large conformational fluctuations of rings over distributed time scales. Taken together, our results provide a new molecular understanding of ring polymer dynamics in ring-linear blends in the nonequilibrium flow.

1.
McLeish
,
T. C. B.
, “
Polymers without beginning or end
,”
Science
297
,
2005
2006
(
2002
).
2.
Taanman
,
J. W.
, “
The mitochondrial genome: Structure, transcription, translation and replication
,”
Biochim. Biophys. Acta Bioenerg.
1410
,
103
123
(
1999
).
3.
Halverson
,
J. D.
,
J.
Smrek
,
K.
Kremer
, and
A. Y.
Grosberg
, “
From a melt of rings to chromosome territories: The role of topological constraints in genome folding
,”
Rep. Prog. Phys.
77
,
022601
(
2014
), e-print arXiv:1311.5262.
4.
Deutman
,
A. B. C.
,
C.
Monnereau
,
J. A. A. W.
Elemans
,
G.
Ercolani
,
R. J. M.
Nolte
, and
A. E.
Rowan
, “
Mechanism of threading a polymer through a macrocyclic ring
,”
Science
322
,
1668
1671
(
2008
).
5.
Edwards
,
J. P.
,
W. J.
Wolf
, and
R. H.
Grubbs
, “
The synthesis of cyclic polymers by olefin metathesis: Achievements and challenges
,”
J. Polym. Sci. Part A: Polym. Chem.
57
,
228
242
(
2019
).
6.
Feinberg
,
A. M.
,
H. L.
Hernandez
,
C. L.
Plantz
,
E. B.
Mejia
,
N. R.
Sottos
,
S. R.
White
, and
J. S.
Moore
, “
Cyclic poly(phthalaldehyde): Thermoforming a bulk transient material
,”
ACS. Macro Lett.
7
,
47
52
(
2018
).
7.
Lloyd
,
E. M.
,
H. L.
Hernandez
,
A. M.
Feinberg
,
M.
Yourdkhani
,
E. K.
Zen
,
E. B.
Mejia
,
N. R.
Sottos
,
J. S.
Moore
, and
S. W.
White
, “
Fully recyclable metastable polymers and composites
,”
Chem. Mater.
31
,
398
406
(
2019
).
8.
Rosenthal-Kim
,
E. Q.
, and
J. E.
Puskas
, “
Green polymer chemistry: Investigating the mechanism of radical ring-opening redox polymerization (R3P) of 3, 6-dioxa-1, 8-octanedithiol (DODT)
,”
Molecules
20
,
6504
6519
(
2015
).
9.
Rosenthal-Kim
,
E.
, and
J. E.
Puskas
, “
Green polymer chemistry: Living oxidative polymerization of dithiols
,”
Pure Appl. Chem.
84
,
2121
2133
(
2012
).
10.
Roovers
,
J.
, “
Melt properties of ring polystyrenes
,”
Macomolecules
18
,
1359
1361
(
1985
).
11.
Mckenna
,
G. B.
,
G.
Hadziioannou
,
P.
Lutz
,
G.
Hild
,
C.
Strazielle
,
C.
Straupe
,
P.
Rempp
, and
A. J.
Kovacs
, “
Dilute solution characterization of cyclic polystyrene molecules and their zero-shear viscosity in the melt
,”
Macromelecules
20
,
498
512
(
1987
).
12.
Roovers
,
J.
, “
Viscoelastic properties of polybutadiene rings
,”
Macromolecules
21
,
1517
1521
(
1988
).
13.
McKenna
,
G. B.
,
B. J.
Hostetter
,
N.
Hadjichristidis
,
L. J.
Fetters
, and
D. J.
Plazek
, “
A study of the linear viscoelastic properties of cyclic polystyrenes using creep and recovery measurements
,”
Macromelecules
22
,
1834
1852
(
1989
).
14.
Kapnistos
,
M.
,
M.
Lang
,
D.
Vlassopoulos
,
W.
Pyckhout-Hintzen
,
D.
Richter
,
D.
Cho
,
T.
Chang
, and
M.
Rubinstein
, “
Unexpected power-law stress relaxation of entangled ring polymers
,”
Nat. Mater.
7
,
997
1002
(
2008
).
15.
Doi
,
Y.
,
A.
Matsumoto
,
T.
Inoue
,
T.
Iwamoto
,
A.
Takano
,
Y.
Matsushita
,
Y.
Takahashi
, and
H.
Watanabe
, “
Re-examination of terminal relaxation behavior of high-molecular-weight ring polystyrene melts
,”
Rheol. Acta
56
,
567
581
(
2017
).
16.
Obukhov
,
S. P.
,
M.
Rubinstein
, and
T.
Duke
, “
Dynamics of a ring polymer in a gel
,”
Phys. Rev. Lett.
73
,
1919
1922
(
1994
).
17.
Ge
,
T.
,
S.
Panyukov
, and
M.
Rubinstein
, “
Self-similar conformations and dynamics in entangled melts and solutions of nonconcatenated ring polymers
,”
Macromolecules
49
,
708
722
(
2016
).
18.
McKenna
,
G.
, and
D.
Plazek
, “
Viscosity of blends of linear and cyclic molecules of similar molecular mass
,”
Polym. Commun. Guildford
27
(
10
),
304
306
(
1986
).
19.
Lee
,
H. H. C.
,
H. H. C.
Lee
,
W.
Lee
,
T.
Chang
, and
J.
Roovers
, “
Fractionation of cyclic polystyrene from linear precursor by HPLC at the chromatographic critical condition
,”
Macromolecules
33
,
8119
8121
(
2000
), e-print arXiv:1011.1669v3.
20.
Yan
,
Z. C.
,
S.
Costanzo
,
Y.
Jeong
,
T.
Chang
, and
D.
Vlassopoulos
, “
Linear and nonlinear shear rheology of a marginally entangled ring polymer
,”
Macromolecules
49
,
1444
1453
(
2016
).
21.
Huang
,
Q.
,
J.
Ahn
,
D.
Parisi
,
T.
Chang
,
O.
Hassager
,
S.
Panyukov
,
M.
Rubinstein
, and
D.
Vlassopoulos
, “
Unexpected stretching of entangled ring macromolecules
,”
Phys. Rev. Lett.
122
,
208001
(
2019
).
22.
Borger
,
A.
,
W.
Wang
,
T. C.
O’Connor
,
T.
Ge
,
G. S.
Grest
,
G. V.
Jensen
,
J.
Ahn
,
T.
Chang
,
O.
Hassager
,
K.
Mortensen
,
D.
Vlassopoulos
, and
Q.
Huang
, “
Threading–unthreading transition of linear-ring polymer blends in extensional flow
,”
ACS. Macro Lett.
9
,
1452
1457
(
2020
).
23.
Doi
,
Y.
,
K.
Matsubara
,
Y.
Ohta
,
T.
Nakano
,
D.
Kawaguchi
,
Y.
Takahashi
,
A.
Takano
, and
Y.
Matsushita
, “
Melt rheology of ring polystyrenes with ultrahigh purity
,”
Macromolecules
48
,
3140
3147
(
2015
).
24.
Molnar
,
K.
,
C. A.
Helfer
,
G.
Kaszas
,
E.
Krisch
,
D.
Chen
,
G. B.
McKenna
,
J. A.
Kornfield
, and
J. E.
Puskas
, “
Liquid chromatography at critical conditions (LCCC): Capabilities and limitations for polymer analysis
,”
J. Mol. Liq.
322
,
114956
(
2021
).
25.
Iyer
,
B. V. S.
,
A. K.
Lele
, and
S.
Shanbhag
, “
What is the size of a ring polymer in a ring-linear blend?
,”
Macromelecules
40
,
5995
6000
(
2007
).
26.
Robertson
,
R. M.
, and
D. E.
Smith
, “
Self-diffusion of entangled linear and circular DNA molecules: Dependence on length and concentration
,”
Macromolecules
40
,
3373
3377
(
2007
).
27.
Robertson
,
R. M.
, and
D. E.
Smith
, “
Strong effects of molecular topology on diffusion of entangled DNA molecules.
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
4824
4827
(
2007
).
28.
Subramanian
,
G.
, and
S.
Shanbhag
, “
Self-diffusion in binary blends of cyclic and linear polymers
,”
Macromolecules
41
,
7239
7242
(
2008
).
29.
Habuchi
,
S.
,
N.
Satoh
,
T.
Yamamoto
,
Y.
Tezuka
, and
M.
Vacha
, “
Multimode diffusion of ring polymer molecules revealed by a single-molecule study
,”
Angew. Chem. Int. Ed.
49
,
1418
1421
(
2010
).
30.
Halverson
,
J. D.
,
G. S.
Grest
,
A. Y.
Grosberg
, and
K.
Kremer
, “
Rheology of ring polymer melts: From linear contaminants to ring-linear blends
,”
Phys. Rev. Lett.
108
,
038301
(
2012
), e-print arXiv:1112.3519.
31.
Chapman
,
C. D.
,
S.
Shanbhag
,
D. E.
Smith
, and
R. M.
Robertson-Anderson
, “
Complex effects of molecular topology on diffusion in entangled biopolymer blends
,”
Soft Matter
8
,
9177
9182
(
2012
).
32.
Kruteva
,
M.
,
J.
Allgaier
, and
D.
Richter
, “
Direct observation of two distinct diffusive modes for polymer rings in linear polymer matrices by pulsed field gradient (PFG) NMR
,”
Macromolecules
50
,
9482
9493
(
2017
).
33.
Gartner
,
T. E.
,
F. M.
Haque
,
A. M.
Gomi
,
S. M.
Grayson
,
M. J. A.
Hore
, and
A.
Jayaraman
, “
Scaling exponent and effective interactions in linear and cyclic polymer solutions: Theory
,”
Simulat. Exp. Macromol.
52
,
4579
4589
(
2019
).
34.
Graessley
,
W.
, Entangled linear, branched and network polymer systems—Molecular theories, in Synthesis and Degradation Rheology and Extrusion (Springer, Berlin, 1982), pp. 67–117.
35.
Klein
,
J.
, “
Dynamics of entangled linear, branched, and cyclic polymers
,”
Macromolecules
19
,
105
118
(
1986
).
36.
Mills
,
P. J.
,
J. W.
Mayer
,
E. J.
Kramer
,
G.
Hadziioannou
,
P.
Lutz
,
C.
Strazielle
,
P.
Rempp
, and
a. J.
Kovacs
,
Diffusion of polymer rings in linear polymer matrices
,”
Macromolecules
20
,
513
518
(
1987
).
37.
Yang
,
Y.-B.
,
Z.-Y.
Sun
,
C.-L.
Fu
,
L.-J.
An
, and
Z.-G.
Wang
, “
Monte Carlo simulation of a single ring among linear chains: Structural and dynamic heterogeneity
,”
J. Chem. Phys.
133
,
064901
(
2010
).
38.
Tsalikis
,
D. G.
,
V. G.
Mavrantzas
, and
D.
Vlassopoulos
, “
Analysis of slow modes in ring polymers: Threading of rings controls long-time relaxation
,”
ACS. Macro Lett.
5
,
755
760
(
2016
).
39.
O’Connor
,
T. C.
,
T.
Ge
,
M.
Rubinstein
, and
G. S.
Grest
, “
Topological linking drives anomalous thickening of ring polymers in weak extensional flows
,”
Phys. Rev. Lett.
124
,
027801
(
2020
).
40.
Schroeder
,
C. M.
, “
Single polymer dynamics for molecular rheology
,”
J. Rheol. (N. Y.)
62
,
371
403
(
2018
).
41.
Perkins
,
T. T.
,
D. E.
Smith
, and
S.
Chu
, “
Single polymer dynamics in an elongational flow
,”
Science
276
,
2016
2021
(
1997
).
42.
Smith
,
D. E.
,
H. P.
Babcock
, and
S.
Chu
, “
Single-polymer dynamics in steady shear flow
,”
Science
283
,
1724
1727
(
1999
).
43.
Soh
,
B. W.
,
V.
Narsimhan
,
A. R.
Klotz
, and
P. S.
Doyle
, “
Knots modify the coil-stretch transition in linear DNA polymers
,”
Soft Matter
14
,
1689
1698
(
2018
).
44.
Zhou
,
Y.
, and
C. M.
Schroeder
, “
Single polymer dynamics under large amplitude oscillatory extension
,”
Phys. Rev. Fluids
1
,
053301
(
2016
).
45.
Zhou
,
Y.
, and
C. M.
Schroeder
, “
Transient and average unsteady dynamics of single polymers in large-amplitude oscillatory extension
,”
Macromolecules
49
,
8018
8030
(
2016
).
46.
Hsiao
,
K.-W.
,
C.
Samsal
,
J. R.
Prakash
, and
C. M.
Schroeder
, “
Direct observation of DNA dynamics in semi-dilute solutions in extensional flow
,”
J. Rheol. (N. Y.)
61
,
151
167
(
2017
), e-print arXiv:1604.06754.
47.
Samsal
,
C.
,
K.-W.
Hsiao
,
C. M.
Schroeder
, and
J. R.
Prakash
, “
Parameter-free prediction of DNA dynamics in planar extensional flow of semidilute solutions
,”
J. Rheol. (N. Y.)
61
,
169
186
(
2017
).
48.
Young
,
C. D.
, and
C. E.
Sing
, “
Simulation of semidilute polymer solutions in planar extensional flow via conformationally averaged Brownian noise
,”
J. Chem. Phys.
151
,
124907
(
2019
).
49.
Zhou
,
Y.
, and
C. M.
Schroeder
, “
Dynamically heterogeneous relaxation of entangled polymer chains
,”
Phys. Rev. Lett.
120
,
267801
(
2018
).
50.
Li
,
Y.
,
K.-W.
Hsiao
,
C. A.
Brockman
,
D. Y.
Yates
,
R. M.
Robertson-Anderson
,
J. A.
Kornfield
,
M. J.
San Francisco
,
C. M.
Schroeder
, and
G. B.
McKenna
, “
When ends meet: Circular DNA stretches differently in elongational flows
,”
Macromolecules
48
,
5997
6001
(
2015
).
51.
Hsiao
,
K.-W.
,
C. M.
Schroeder
, and
C. E.
Sing
, “
Ring polymer dynamics are governed by a coupling between architecture and hydrodynamic interactions
,”
Macromolecules
49
,
1961
1971
(
2016
).
52.
Weiss
,
L. B.
,
A.
Nikoubashman
, and
C. N.
Likos
, “
Topology-sensitive microfluidic filter for polymers of varying stiffness
,”
ACS. Macro Lett.
6
,
1426
1431
(
2017
).
53.
Young
,
C. D.
,
J. R.
Qian
,
M.
Marvin
, and
C. E.
Sing
, “
Ring polymer dynamics and tumbling-stretch transitions in planar mixed flows
,”
Phys. Rev. E
99
,
062502
(
2019
).
54.
Tu
,
M. Q.
,
M.
Lee
,
R. M.
Robertson-anderson
, and
C. M.
Schroeder
, “
Direct observation of ring polymer dynamics in the flow-gradient plane of shear flow
,”
Macromelecules
53
,
9406
9419
(
2020
).
55.
Zhou
,
Y.
,
K.-W.
Hsiao
,
K. E.
Regan
,
D.
Kong
,
G. B.
McKenna
,
R. M.
Robertson-Anderson
, and
C. M.
Schroeder
, “
Effect of molecular architecture on ring polymer dynamics in semidilute linear polymer solutions
,”
Nat. Commun.
10
,
1753
(
2019
).
56.
Young
,
C. D.
,
Y.
Zhou
,
C. M.
Schroeder
, and
C. E.
Sing
, “Dynamics and rheology of ring-linear blend semidilute solutions in extensional flow: Modeling and molecular simulations,” e-print https://arxiv.org/abs/arXiv:2011.01386 (2021).
57.
Laib
,
S.
,
R. M.
Robertson
, and
D. E.
Smith
, “
Preparation and characterization of a set of linear DNA molecules for polymer physics and rheology studies
,”
Macromolecules
39
,
4115
4119
(
2006
).
58.
Robertson
,
R. M.
,
S.
Laib
, and
D. E.
Smith
, “
Diffusion of isolated DNA molecules: Dependence on length and topology
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
7310
7314
(
2006
).
59.
Peddireddy
,
K. R.
,
M.
Lee
,
Y.
Zhou
,
S.
Adalbert
,
S.
Anderson
,
C. M.
Schroeder
, and
R. M.
Robertson-Anderson
, “
Unexpected entanglement dynamics in semidilute blends of supercoiled and ring DNA
,”
Soft Matter
16
,
152
161
(
2020
).
60.
Haward
,
S. J.
,
M. S. N.
Oliveira
,
M. A.
Alves
, and
G. H.
McKinley
, “
Optimized cross-slot flow geometry for microfluidic extensional rheometry
,”
Phys. Rev. Lett.
109
,
128301
(
2012
).
61.
Kremer
,
K.
, and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
,
5057
5086
(
1990
).
62.
Rotne
,
J.
, and
S.
Prager
, “
Variational treatment of hydrodynamic interaction in polymers
,”
J. Chem. Phys.
50
,
4831
4837
(
1969
).
63.
Yamakawa
,
H.
, “
Transport properties of polymer chains in dilute solution: Hydrodynamic interaction
,”
J. Chem. Phys.
53
,
436
443
(
1970
).
64.
Geyer
,
T.
, and
U.
Winter
, “
An o(n2) approximation for hydrodynamic interactions in Brownian dynamics simulations
,”
J. Chem. Phys.
130
,
114905
(
2009
).
65.
Miao
,
L.
,
C. D.
Young
, and
C. E.
Sing
, “
An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics
,”
J. Chem. Phys.
147
,
024904
(
2017
).
66.
Young
,
C. D.
,
M.
Marvin
, and
C. E.
Sing
, “
Conformationally averaged iterative Brownian dynamics simulations of semidilute polymer solutions
,”
J. Chem. Phys.
149
,
174904
(
2018
).
67.
Katsarou
,
A. F.
,
A. J.
Tsalikis
,
D. G.
Tsalikis
, and
V. G.
Mavrantzas
, “
Dynamic heterogeneity in polymer blends
,”
Polymers
12
,
752
(
2020
).
68.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000219 for supplementary figures, text, and tables.
69.
Shenoy
,
A.
,
C. V.
Rao
, and
C. M.
Schroeder
, “
Stokes trap for multiplexed particle manipulation and assembly using fluidics
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
3976
3981
(
2016
).
70.
Hernández Cifre
,
J. G.
, and
J.
García De La Torre
, “
Kinetic aspects of the coil-stretch transition of polymer chains in dilute solution under extensional flow
,”
J. Chem. Phys.
115
,
9578
9584
(
2001
).
71.
Peddireddy
,
K. R.
,
M.
Lee
,
C. M.
Schroeder
, and
R. M.
Robertson-Anderson
, “
Viscoelastic properties of ring-linear DNA blends exhibit non-monotonic dependence on blend composition
,”
Phys. Rev. Res.
2
,
023213
(
2020
).

Supplementary Material

You do not currently have access to this content.