A multiparticle Brownian dynamics simulation algorithm with a Soddemann–Dünweg–Kremer potential that accounts for pairwise excluded volume interactions between both backbone monomers and associating groups (stickers) on a chain is used to describe the static behavior of associative polymer solutions, across a range of concentrations into the semidilute unentangled regime. Predictions for the fractions of stickers bound by intrachain and interchain associations, as a function of system parameters such as the number of stickers on a chain, the number of backbone monomers between stickers, the solvent quality, and monomer concentration, are obtained. A systematic comparison between simulation results and scaling relations predicted by the mean-field theory of Dobrynin [Macromolecules 37, 3881–3893 (2004)] is carried out. Different regimes of scaling behavior are identified by the theory depending on the monomer concentration, the density of stickers on a chain, and whether the solvent quality for the backbone monomers corresponds to θ or good solvent conditions. Simulation results validate the predictions of the mean-field theory across a wide range of parameter values in all the scaling regimes. The value of the des Cloizeaux exponent, θ2=1/3, proposed by Dobrynin for sticky polymer solutions, is shown to lead to a collapse of simulation data for all the scaling relations considered here. Three different signatures for the characterization of gelation are identified, with each leading to a different value of the concentration at the solgel transition. The Flory–Stockmayer expression relating the degree of interchain conversion at the solgel transition to the number of stickers on a chain, modified by Dobrynin to account for the presence of intrachain associations, is found to be validated by simulations for all three gelation signatures. Simulation results confirm the prediction of scaling theory for the gelation line that separates sol and gel phases, when the modified Flory–Stockmayer expression is used. Phase separation is found to occur with increasing concentration for systems in which the backbone monomers are under θ-solvent conditions and is shown to coincide with a breakdown in the predictions of scaling theory.

1.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
Oxford
,
2003
).
2.
Rubinstein
,
M.
, and
A.
Dobrynin
, “
Solutions of associative polymers
,”
Trends Polym. Sci.
5
,
181
186
(
1997
).
3.
Winnik
,
M. A.
, and
A.
Yekta
, “
Associative polymers in aqueous solution
,”
Curr. Opin. Colloid Interface Sci.
2
,
424
436
(
1997
).
4.
Glass
,
J. E.
,
D. N.
Schulz
, and
C. F.
Zukoski
, “
Polymers as rheology modifiers
,”
ACS Symp. Ser.
462
,
2
17
(
1991
).
5.
Tripathi
,
A.
,
K. C.
Tam
, and
G. H.
McKinley
, “
Rheology and dynamics of associative polymers in shear and extension: Theory and experiments
,”
Macromolecules
39
,
1981
1999
(
2006
).
6.
El-Sherbiny
,
I. M.
, and
M. H.
Yacoub
, “
Hydrogel scaffolds for tissue engineering: Progress and challenges
,”
Global Cardiol. Sci. Pract.
2013
(
3
),
316
342
(
2013
).
7.
O’Leary
,
M.
,
B.
Hanson
, and
C. J.
Smith
, “
Viscosity and non-newtonian features of thickened fluids used for dysphagia therapy
,”
J. Food Sci.
75
,
E330
E338
(
2010
).
8.
Rossow
,
T.
, and
S.
Seiffert
, Supramolecular polymer networks: Preparation, properties, and potential,” in Supramolecular Polymer Networks and Gels (Springer, Cham, 2015), pp. 1–46.
9.
Tsitsilianis
,
C.
, “
Responsive reversible hydrogels from associative ‘smart’ macromolecules
,”
Soft Matter
6
,
2372
2388
(
2010
).
10.
Voorhaar
,
L.
, and
R.
Hoogenboom
, “
Supramolecular polymer networks: Hydrogels and bulk materials
,”
Chem. Soc. Rev.
45
,
4013
4031
(
2016
).
11.
Castillo-Tejas
,
J.
,
O.
Castrejon-Gonzalez
,
S.
Carro
,
V.
Gonzalez-Coronel
,
J. F. J.
Alverado
, and
O.
Manero
, “
Associative polymers. Part III: Shear rheology from molecular dynamics
,”
Colloids Surf., A
491
,
37
49
(
2016
).
12.
Furuya
,
T.
, and
T.
Koga
, “
Molecular simulation of structure formation and rheological properties of mixtures of telechelic and monofunctional associating polymer
,”
J. Polym. Sci., Part B: Polym. Phys.
56
,
1251
1264
(
2018
).
13.
Hernández Cifre
,
J. G.
,
T. M. A. O. M.
Barenbrug
,
J. D.
Schieber
, and
B. H. A. A.
van den Brule
, “
Brownian dynamics simulation of reversible polymer networks under shear using a non-interacting dumbbell model
,”
J. Non-Newtonian Fluid Mech.
113
,
73
96
(
2003
).
14.
Hernández Cifre
,
J. G.
,
R.
Pamies
,
A. L.
Kjøniksen
,
K. D.
Knudsen
,
B.
Nyström
, and
J.
García de la Torre
, “
Brownian dynamics simulation of reversible polymer networks using a non-interacting bead-and-spring chain model
,”
J. Non-Newtonian Fluid Mech.
146
,
3
10
(
2007
).
15.
Myung
,
J. S.
,
R. G.
Winkler
, and
G.
Gompper
, “
Self-organization in suspensions of end-functionalized semiflexible polymers under shear flow
,”
J. Chem. Phys.
143
,
243117
(
2015
).
16.
Omar
,
A. K.
, and
Z.-G.
Wang
, “
Shear-induced heterogeneity in associating polymer gels: Role of network structure and dilatancy
,”
Phys. Rev. Lett.
119
,
117801
(
2017
).
17.
Park
,
G. W.
, and
G.
Ianniruberto
, “
A new stochastic simulation for the rheology of telechelic associating polymers
,”
J. Rheol.
61
,
1293
1305
(
2017
).
18.
Sprakel
,
J.
,
E.
Spruijt
,
J.
van der Gucht
,
J. T.
Padding
, and
W. J.
Briels
, “
Failure-mode transition in transient polymer networks with particle-based simulations
,”
Soft Matter
5
,
4748
4756
(
2009
).
19.
van den Brule
,
B. H. A. A.
, and
P. J.
Hoogerbrugge
, “
Brownian dynamics simulation of reversible polymeric networks
,”
J. Non-Newtonian Fluid Mech.
60
,
303
334
(
1995
).
20.
Semenov
,
A. N.
, and
M.
Rubinstein
, “
Thermoreversible gelation in solutions of associative polymers. 1. Statics
,”
Macromolecules
31
,
1373
1385
(
1998
).
21.
Dobrynin
,
A. V.
, “
Phase diagram of solutions of associative polymers
,”
Macromolecules
37
,
3881
3893
(
2004
).
22.
Kumar
,
S. K.
, and
A. Z.
Panagiotopoulos
, “
Thermodynamics of reversibly associating polymer solutions
,”
Phys. Rev. Lett.
82
,
5060
5063
(
1999
).
23.
Flory
,
P. J.
,
Principles of Polymer Chemistry
(
Cornell University Press
,
Ithaca
,
1953
).
24.
Stockmayer
,
W. H.
, “
Theory of molecular size distribution and gel formation in branched polymers. II. General cross linking
,”
J. Chem. Phys.
12
,
125
131
(
1944
).
25.
Li
,
L.
, and
Y.
Aoki
, “
Rheological images of poly (vinyl chloride) gels. 1. The dependence of sol-gel transition on concentration
,”
Macromolecules
30
,
7835
7841
(
1997
).
26.
Li
,
L.
,
H.
Uchida
,
Y.
Aoki
, and
M. L.
Yao
, “
Rheological images of poly(vinyl chloride) gels. 2. Divergence of viscosity and the scaling law before the sol–gel transition
,”
Macromolecules
30
,
7842
7848
(
1997
).
27.
Winter
,
H. H.
, and
F.
Chambon
, “
Analysis of linear viscoelasticity of a crosslinking polymer at the gel point
,”
J. Rheol.
30
,
367
382
(
1986
).
28.
Santra
,
A.
,
K.
Kumari
,
R.
Padinhateeri
,
B.
Dünweg
, and
J. R.
Prakash
, “
Universality of the collapse transition of sticky polymers
,”
Soft Matter
15
,
7876
7887
(
2019
).
29.
Soddemann
,
T.
,
B.
Dünweg
, and
K.
Kremer
, “
A generic computer model for amphiphilic systems
,”
Eur. Phys. J. E
6
,
409
419
(
2001
).
30.
Cass
,
M. J.
,
D. M.
Heyes
,
R.-L.
Blanchard
, and
R. J.
English
, “
Simulations and experiments of self-associating telechelic polymer solutions
,”
J. Phys.: Condens. Matter
20
,
335103
(
2008
).
31.
Aust
,
C.
,
M.
Kröger
, and
S.
Hess
, “
Structure and dynamics of dilute polymer solutions under shear flow via nonequilibrium molecular dynamics
,”
Macromolecules
32
,
5660
5672
(
1999
).
32.
Ermak
,
D. L.
, and
J. A.
McCammon
, “
Brownian dynamics with hydrodynamic interactions
,”
J. Chem. Phys.
69
,
1352
1360
(
1978
).
33.
Fixman
,
M.
, “
Inclusion of hydrodynamic interaction in polymer dynamical simulations
,”
Macromolecules
14
,
1710
1717
(
1981
).
34.
Iniesta
,
A.
, and
J. G.
de la Torre
, “
A second-order algorithm for the simulation of the Brownian dynamics of macromolecular models
,”
J. Chem. Phys.
92
,
2015
2018
(
1990
).
35.
Jendrejack
,
R. M.
,
J. J.
De Pablo
, and
M. D.
Graham
, “
Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions
,”
J. Chem. Phys.
116
,
7752
7759
(
2002
).
36.
Jendrejack
,
R. M.
,
M. D.
Graham
, and
J. J.
de Pablo
, “
Hydrodynamic interactions in long chain polymers: Application of the Chebyshev polynomial approximation in stochastic simulations
,”
J. Chem. Phys.
113
,
2894
2900
(
2000
).
37.
Kailasham
,
R.
,
R.
Chakrabarti
, and
J. R.
Prakash
, “
Rheological consequences of wet and dry friction in a dumbbell model with hydrodynamic interactions and internal viscosity
,”
J. Chem. Phys.
149
,
094903
(
2018
).
38.
Kailasham
,
R.
,
R.
Chakrabarti
, and
J. R.
Prakash
, “
Wet and dry internal friction can be measured with the Jarzynski equality
,”
Phys. Rev. Res.
2
,
013331
(
2020
).
39.
Kairn
,
T.
,
P. J.
Daivis
,
M. L.
Matin
, and
I. K.
Snook
, “
Concentration dependence of viscometric properties of model short chain polymer solutions
,”
Polymer
45
,
2453
2464
(
2004
).
40.
Kröger
,
M.
, “
Simple models for complex nonequilibrium fluids
,”
Phys. Rep.
390
,
453
551
(
2004
).
41.
Larson
,
R. G.
, “
The rheology of dilute solutions of flexible polymers: Progress and problems
,”
J. Rheol.
49
,
1
70
(
2005
).
42.
Petera
,
D.
, and
M.
Muthukumar
, “
Brownian dynamics simulation of bead-rod chains under shear with hydrodynamic interaction
,”
J. Chem. Phys.
111
,
7614
7623
(
1999
).
43.
Prabhakar
,
R.
, and
J. R.
Prakash
, “
Viscometric functions for Hookean dumbbells with excluded volume and hydrodynamic interactions
,”
J. Rheol.
46
,
1191
1220
(
2002
).
44.
Prabhakar
,
R.
, and
J. R.
Prakash
, “
Multiplicative separation of the influences of excluded volume, hydrodynamic interactions and finite extensibility on the rheological properties of dilute polymer solutions
,”
J. Non-Newtonian Fluid Mech.
116
,
163
182
(
2004
).
45.
Prakash
,
J. R.
, “
Universal dynamics of dilute and semidilute solutions of flexible linear polymers
,”
Curr. Opin. Colloid Interface Sci.
43
,
63
79
(
2019
).
46.
Rey
,
A.
,
J. J.
Freire
, and
J. G.
de la Torre
, “
Brownian dynamics of a flexible polymer. Internal modes and quaiselastic scattering function
,”
J. Chem. Phys.
90
,
2035
2041
(
1989
).
47.
Schroeder
,
C. M.
,
R. E.
Teixeira
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Dynamics of DNA in the flow-gradient plane of steady shear flow: Observations and simulations
,”
Macromolecules
38
,
1967
1978
(
2005
).
48.
Shaqfeh
,
E. S. G.
, “
The dynamics of single-molecule DNA in flows
,”
J. Non-Newtonian Fluid Mech.
130
,
1
28
(
2005
).
49.
Todd
,
B. D.
, and
P. J.
Daivis
, “
Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: Techniques and applications
,”
Mol. Simul.
33
,
189
229
(
2007
).
50.
Zylka
,
W.
, “
Gaussian approximation and Brownian dynamics simulations for Rouse chains with hydrodynamic interaction undergoing simple shear flow
,”
J. Chem. Phys.
94
,
4628
4636
(
1991
).
51.
Zylka
,
W.
, and
H. C.
Ottinger
, “
A comparison between simulations and various approximations for Hookean dumbbells with hydrodynamic interaction
,”
J. Chem. Phys.
90
,
474
480
(
1989
).
52.
Ahlrichs
,
P.
, and
B.
Dünweg
, “
Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics
,”
J. Chem. Phys.
111
,
8225
8239
(
1999
).
53.
Dünweg
,
B.
, “Polymer solutions,” in Handbook of Materials Modeling, edited by W. Andreoni and S. Yip (Springer, Cham, 2018), pp. 1–19.
54.
Dünweg
,
B.
, and
A. J. C.
Ladd
, “
Lattice Boltzmann simulations of soft matter systems
,”
Adv. Poly. Sci.
221
,
89
166
(
2009
).
55.
Dyer
,
O. T.
, and
R. C.
Ball
, “
Wavelet Monte Carlo dynamics: A new algorithm for simulating the hydrodynamics of interacting Brownian particles
,”
J. Chem. Phys.
146
,
124111
(
2017
).
56.
Gompper
,
G.
,
T.
Ihle
,
D. M.
Kroll
, and
R. G.
Winkler
,
Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids
(
Springer
,
Berlin
,
2009
), pp.
1
87
.
57.
Jain
,
A.
,
C.
Sasmal
,
R.
Hartkamp
,
B. D.
Todd
, and
J. R.
Prakash
, “
Brownian dynamics simulations of planar mixed flows of polymer solutions at finite concentrations
,”
Chem. Eng. Sci.
121
,
245
257
(
2015
).
58.
Jain
,
A.
,
P.
Sunthar
,
B.
Dünweg
, and
J. R.
Prakash
, “
Optimization of a Brownian dynamics algorithm for semidilute polymer solutions
,”
Phys. Rev. E
85
,
066703
(
2012
).
59.
Kapral
,
R.
, “
Multiparticle collision dynamics: Simulation of complex systems on mesoscales
,”
Adv. Chem. Phys.
140
,
89
146
(
2008
).
60.
Saadat
,
A.
, and
B.
Khomami
, “
Matrix-free Brownian dynamics simulation technique for semidilute polymeric solutions
,”
Phys. Rev. E
92
,
033307
(
2015
).
61.
Stoltz
,
C.
,
J.
de Pablo
, and
M.
Graham
, “
Concentration dependence of shear and extensional rheology of polymer solutions: Brownian dynamics simulations
,”
J. Rheol.
50
,
137
167
(
2006
).
62.
Yong
,
X.
, “
Hydrodynamic interactions and entanglements of polymer solutions in many-body dissipative particle dynamics
,”
Polymers
8
(
12
),
426
(
2016
).
63.
Young
,
C. D.
,
M.
Marvin
, and
C. E.
Sing
, “
Conformationally averaged iterative Brownian dynamics simulations of semidilute polymer solutions
,”
J. Chem. Phys.
149
,
174904
(
2018
).
64.
Fedosov
,
D. A.
,
S. P.
Singh
,
A.
Chatterji
,
R. G.
Winkler
, and
G.
Gompper
, “
Semidilute solutions of ultra-soft colloids under shear flow
,”
Soft Matter
8
,
4109
4120
(
2012
).
65.
Huang
,
C. C.
,
R. G.
Winkler
,
G.
Sutmann
, and
G.
Gompper
, “
Semidilute polymer solutions at equilibrium and under shear flow
,”
Macromolecules
43
,
10107
10116
(
2010
).
66.
Jain
,
A.
,
B.
Dünweg
, and
J. R.
Prakash
, “
Dynamic crossover scaling in polymer solutions
,”
Phys. Rev. Lett.
109
,
088302
(
2012
).
67.
Qi
,
K.
,
E.
Westphal
,
G.
Gompper
, and
R. G.
Winkler
, “
Enhanced rotational motion of spherical squirmer in polymer solutions
,”
Phys. Rev. Lett.
124
,
068001
(
2020
).
68.
Sasmal
,
C.
,
C. M. S.
Kai-Wen Hsiao
, and
J. R.
Prakash
, “
Parameter-free prediction of dna dynamics in planar extensional flow of semidilute solutions
,”
J. Rheol.
61
,
169
186
(
2017
).
69.
Theers
,
M.
,
E.
Westphal
,
K.
Qi
,
R. G.
Winkler
, and
G.
Gompper
, “
Clustering of microswimmers: Interplay of shape and hydrodynamics
,”
Soft Matter
14
,
8590
8603
(
2018
).
70.
Zhao
,
J.
,
S.
Chen
, and
N.
Phan-Thien
, “
Rheology of polymers in many-body dissipative particle dynamics simulations: Schmidt number effect
,”
Mol. Simul.
44
,
797
814
(
2018
).
71.
Myung
,
J. S.
,
R. G.
Winkler
, and
G.
Gompper
, “
Self-organised structures of attractive end-functionalized semiflexible polymer suspensions
,”
Macromolecules
47
,
4118
4125
(
2014
).
72.
Bird
,
R. B.
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
John Wiley and Sons
,
New York
,
1987
), Vol. 2.
73.
David
,
R. L. A.
,
M.
Wei
, and
J. A.
Kornfield
, “
Effects of pairwise, donor-acceptor functional groups on polymer solubility, solution viscosity and mist control
,”
Polymer
50
,
6323
6330
(
2009
).
74.
David
,
R. L. A.
,
M.
Wei
,
D.
Liu
,
B. F.
Bathel
,
J. P.
Plog
,
A.
Ratner
, and
J. A.
Kornfield
, “
Effects of pairwise, self-associating functional side groups on polymer solubility, solution viscosity, adn mist control
,”
Macromolecules
42
,
1380
1391
(
2009
).
75.
Guo
,
X.
,
A. A.
Abdala
,
B. L.
May
,
S. F.
Lincoln
,
S. A.
Khan
, and
R. K.
Prudhomme
, “
Novel associative polymer networks based on cyclodextrin inclusion compounds
,”
Macromolecules
38
,
3037
3040
(
2005
).
76.
Schäfer
,
L.
,
Excluded Volume Effects in Polymer Solutions
(
Springer
,
Berlin
,
1999
).
77.
Hayward
,
R. C.
, and
W. W.
Graessley
, “
Excluded volume effects in polymer solutions. 1. Dilute solution properties of linear chains in good and ϑ solvents
,”
Macromolecules
32
,
3502
3509
(
1999
).
78.
Pan
,
S.
,
D.
Ahirwal
,
D. A.
Nguyen
,
P.
Sunthar
,
T.
Sridhar
, and
J. R.
Prakash
, “
Viscosity radius in dilute polymer solutions: Universal behaviour from DNA rheology and Brownian dynamics simulations
,”
Macromolecules
47
,
7548
7560
(
2014
).
79.
Pan
,
S.
,
D. A.
Nguyen
,
P.
Sunthar
,
T.
Sridhar
, and
J. R.
Prakash
, “
Universal solvent quality crossover of the zero shear rate viscosity of semidilute DNA solutions
,”
J. Rheol.
58
,
339
368
(
2014
).
80.
Hoy
,
R. S.
, and
G. H.
Fredrickson
, “
Thermoreversible associating polymer networks. I. Interplay of thermodynamics, chemical kinetics, and polymer physics
,”
J. Chem. Phys.
131
,
224902
(
2009
).
81.
Sing
,
C. E.
, and
A.
Alexander-Katz
, “
Equilibrium structure and dynamics of self-associating single polymers
,”
Macromolecules
44
,
6962
6971
(
2011
).
82.
Erukhimovich
,
I.
,
M. V.
Thamm
, and
A. V.
Ermoshkin
, “
Theory of the sol-gel transition in thermoreversible gels with due regard for the fundamental role of mesoscopic cyclization effects. 1. Thermodynamic and structural characteristics of the gel phase
,”
Macromolecules
34
,
5653
5674
(
2001
).
83.
Ishida
,
M.
, and
F.
Tanaka
, “
Theoretical study of postgel regime in thermoreversible gelation
,”
Macromolecules
30
,
3900
3909
(
1997
).
84.
Ozaki
,
H.
, and
T.
Koga
, “
Theory of transient networks with a well-defined junction structure
,”
J. Chem. Phys.
152
,
184902
(
2020
).
85.
Tanaka
,
F.
,
Polymer Physics: Applications to Molecular Association and Thermoreversible Gelation
(
Cambridge University Press
,
Cambridge
,
2011
).
86.
Tanaka
,
F.
, and
A.
Matsuyama
, “
Tricriticality in thermoreversible gels
,”
Phys. Rev. Lett.
62
,
2759
2762
(
1989
).
87.
des Cloizeaux
,
J.
, “
Short range correlation between elements of a long polymer in a good solvent
,”
J. Phys. France
41
,
223
238
(
1980
).
88.
Duplantier
,
B.
, “
Statistical mechanics of polymer networks of any topology
,”
J. Stat. Phys.
54
,
581
680
(
1989
).
89.
Hsu
,
H.-P.
,
W.
Nadler
, and
P.
Grassberger
, “
Scaling of star polymers with 1-80 arms
,”
Macromolecules
37
,
4658
4663
(
2004
).
90.
Redner
,
S.
, “
Distribution functions in the interior of polymer chains
,”
J. Phys. A: Math. Gen.
13
,
3525
3541
(
1980
).
91.
Witten
,
T. A.
, and
J. J.
Prentis
, “
The interpenetration of two chain polymers in a good solvent
,”
J. Chem. Phys.
77
,
4247
4253
(
1982
).
92.
Sevick
,
E. M.
,
P. A.
Monson
, and
J. M.
Ottino
, “
Monte Carlo calculations of cluster statistics in continuum models of composite morphology
,”
J. Chem. Phys.
88
,
1198
1206
(
1988
).
93.
Daoud
,
M.
,
J. P.
Cotton
,
B.
Farnoux
,
G.
Jannink
,
G.
Sarma
,
H.
Benoit
,
C.
Duplessix
,
C.
Picot
, and
P. G.
de Gennes
, “
Solutions of flexible polymers. neutron experiments and interpretation
,”
Macromolecules
8
,
804
818
(
1975
).
94.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon Press
,
Oxford
,
1986
).
95.
Pelissetto
,
A.
, “
Osmotic pressure and polymer size in semidilute polymer solutions under goodsolvent conditions
,”
J. Chem. Phys.
129
,
044901
(
2008
).
96.
Stauffer
,
D.
, and
A.
Aharony
,
Introduction to Percolation Theory
(
Taylor and Francis
,
London
,
1992
).
97.
Tanaka
,
F.
, “
Polymer-surfactant interaction in thermoreversible gels
,”
Macromolecules
31
,
384
393
(
1998
).
98.
Christensen
,
K.
, and
N. R.
Moloney
,
Complexity and Criticality
(
Imperial College Press
,
London
,
2005
).
99.
Kumar
,
S. K.
, and
J. F.
Douglas
, “
Gelation in physically associating polymer solutions
,”
Phys. Rev. Lett.
87
,
188301
(
2001
).
100.
Dautenhahn
,
J.
, and
C. K.
Hall
, “
Monte Carlo simulation of off-lattice polymer chains: Effective pair potentials in dilute solution
,”
Macromolecules
27
,
5399
5412
(
1994
).
101.
Withers
,
I. M.
,
A. V.
Dobrynin
,
M. L.
Berkowitz
, and
M.
Rubinstein
, “
Monte Carlo simulation of homopolymer chains. I. Second virial coefficient
,”
J. Chem. Phys.
118
,
4721
4732
(
2003
).
102.
See supplementary material at https://scitation.org/doi.org/10.1122/8.0000235 for (i) the equivalence of two different sticking rules for stickers within the cutoff radius, (ii) the influence of hydrodynamic interactions on the time taken to achieve a stationary state, (iii) the scaling of computational cost with chain size, and (iii) all the data presented in Sec. V for the dependence of Rg, p1 and p2 on various parameters {Nb,,f,ϵbb,ϵst,c,c/c} are given in tabular form in Table S2 for comparison with future model predictions.

Supplementary Material

You do not currently have access to this content.