Polymers bearing associative groups (APs) are characterized by their fantastic viscoelastic behaviors. In a work recently published by our group [Jiang et al., Macromolecules53, 3438–3451 (2020)], a single chain sticky Rouse model (SRM) is proposed to describe the linear viscoelasticity of APs without the entanglement effect. In this work, equilibrium molecular dynamics simulation of an unentangled melt of an AP with uniformly distributed stickers is carried out, and the dynamic properties are simultaneously analyzed from the SRM. A chain model with capped stickers is proposed so that a well-defined association chemistry is promised in the simulation system. The relative effective frictional coefficient of stickers, which is the key parameter in the SRM, is extracted from the chain center-of-mass diffusion, and it is found to be consistent with the dynamics of associative reaction in the fully gelated network. Based on this, a linear relaxation modulus and segmental diffusion functions are predicted from the SRM without fitting parameters, and these are found to quantitatively agree with the simulation results, showing the effectiveness of the SRM in connecting the dynamic properties at different molecular levels. The change in relaxation modes and the definition of the effective chain center are found to be crucial in the scenario of the SRM. Finally, the above analysis from the SRM is successfully extended to the simulation system with asymmetric chains. All these simulation results strongly support the SRM as a molecular model for the linear rheology of AP.

1.
Dzhardimatieva
,
G. I.
,
B. C.
Yadav
,
S.
Singh
, and
I. E.
Uflyand
, “
Self-healing and shape memory metallopolymers: State-of-the-art and future perspectives
,”
Dalton Trans.
49
,
3042
3087
(
2020
).
2.
Perera
,
M. M.
, and
N.
Ayres
, “
Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels
,”
Polym. Chem.
11
,
1410
1423
(
2020
).
3.
Lu
,
W.
,
X.
Le
,
J.
Zhang
,
Y.
Huang
, and
T.
Chen
, “
Supramolecular shape memory hydrogels: A new bridge between stimuli-responsive polymers and supramolecular chemistry
,”
Chem. Soc. Rev.
46
,
1284
1294
(
2017
).
4.
Seiffert
,
S.
, and
J.
Sprakel
, “
Physical chemistry of supramolecular polymer networks
,”
Chem. Soc. Rev.
41
,
909
930
(
2012
).
5.
Van Ruymbeke
,
E.
, “
Preface: Special issue on associating polymers
,”
J. Rheol.
61
,
1099
1102
(
2017
).
6.
Zhang
,
Z. J.
,
Q.
Chen
, and
R. H.
Colby
, “
Dynamics of associative polymers
,”
Soft Matter
14
,
2961
2977
(
2018
).
7.
Chen
,
Q.
,
G. J.
Tudryn
, and
R. H.
Colby
, “
Ionomer dynamics and the sticky Rouse model
,”
J. Rheol.
57
,
1441
1462
(
2013
).
8.
Rubinstein
,
M.
, and
A. N.
Semenov
, “
Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics
,”
Macromolecules
31
,
1386
1397
(
1998
).
9.
Leibler
,
L.
,
M.
Rubinstein
, and
R. H.
Colby
, “
Dynamics of reversible networks
,”
Macromolecules
24
,
4701
4707
(
1991
).
10.
Rubinstein
,
M.
, and
A. N.
Semenov
, “
Dynamics of entangled solutions of associating polymers
,”
Macromolecules
34
,
1058
1068
(
2001
).
11.
Cates
,
M. E.
, “
Reptation of living polymers: Dynamics of entangled polymers in the presence of reversible chain-scission reactions
,”
Macromolecules
20
,
2289
2296
(
1987
).
12.
Baxandall
,
L. G.
, “
Dynamics of reversibly crosslinked chains
,”
Macromolecules
22
,
1982
1988
(
1989
).
13.
Chen
,
Q.
,
C.
Huang
,
R. A.
Weiss
, and
R. H.
Colby
, “
Viscoelasticity of reversible gelation for ionomers
,”
Macromolecules
48
,
1221
1230
(
2015
).
14.
Jongschaap
,
R. J. J.
,
R. H. W.
Wientjes
,
M. H. G.
Duits
, and
J.
Mellema
, “
A generalized transient network model for associative polymer networks
,”
Macromolecules
34
,
1031
1038
(
2001
).
15.
Wientjes
,
R. H. W.
,
R. J. J.
Jongschaap
,
M. H. G.
Duits
, and
J.
Mellema
, “
A new transient network model for associative polymer networks
,”
J. Rheol.
43
,
375
391
(
1999
).
16.
Indei
,
T.
, and
J.
Takimoto
, “
Linear viscoelastic properties of transient networks formed by associating polymers with multiple stickers
,”
J. Chem. Phys.
133
,
194902
(
2010
).
17.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
New York
,
1986
).
18.
Watanabe
,
H.
, “
Slow dynamics in homopolymer liquids
,”
Polym. J.
41
,
929
950
(
2009
).
19.
Yang
,
Y. L.
, “
Graph theory of viscoelastic and configurational properties of Gaussian chains
,”
Macromol. Theory Simul.
7
,
521
549
(
1998
).
20.
Rao
,
A.
,
H.
Yao
, and
B. D.
Olsen
, “
Bridging dynamic regimes of segmental relaxation and center-of-mass diffusion in associative protein hydrogels
,”
Phys. Rev. Res.
2
,
043369
(
2020
).
21.
Ramirez
,
J.
,
T. J.
Dursch
, and
B. D.
Olsen
, “
A molecular explanation for anomalous diffusion in supramolecular polymer networks
,”
Macromolecules
51
,
2517
2525
(
2018
).
22.
Tang
,
S.
,
M.
Wang
, and
B. D.
Olsen
, “
Anomalous self-diffusion and sticky Rouse dynamics in associative protein hydrogels
,”
J. Am. Chem. Soc.
137
,
3946
3957
(
2015
).
23.
Jiang
,
N.
,
H.
Zhang
,
P.
Tang
, and
Y.
Yang
, “
Linear viscoelasticity of associative polymers: Sticky Rouse model and the role of bridges
,”
Macromolecules
53
,
3438
3451
(
2020
).
24.
Rouse
,
P. E.
, “
A theory of the linear viscoelastic properties of dilute solutions of coiling polymers
,”
J. Chem. Phys.
21
,
1272
1280
(
1953
).
25.
Hansen
,
D. R.
, and
M.
Shen
, “
Viscoelastic retardation time computations for homogeneous block copolymers
,”
Macromolecules
8
,
343
348
(
1975
).
26.
Groot
,
R. D.
, and
W. G. M.
Agterof
, “
Dynamic viscoelastic modulus of associative polymer networks: Off-lattice simulations, theory and comparison to experiments
,”
Macromolecules
28
,
6284
6295
(
1995
).
27.
Hoy
,
R. S.
, and
G. H.
Fredrickson
, “
Thermoreversible associating polymer networks. I. Interplay of thermodynamics, chemical kinetics, and polymer physics
,”
J. Chem. Phys.
131
,
224902
(
2009
).
28.
Amin
,
D.
,
A. E.
Likhtman
, and
Z.
Wang
, “
Dynamics in supramolecular polymer networks formed by associating telechelic chains
,”
Macromolecules
49
,
7510
7524
(
2016
).
29.
Wilson
,
M.
,
A.
Rabinovitch
, and
A. R. C.
Baljon
, “
Computational study of the structure and rheological properties of self-associating polymer networks
,”
Macromolecules
48
,
6313
6320
(
2015
).
30.
Omar
,
A. K.
, and
Z. G.
Wang
, “
Shear-induced heterogeneity in associating polymer gels: Role of network structure and dilatancy
,”
Phys. Rev. Lett.
119
,
117801
(
2017
).
31.
Furuya
,
T.
, and
T.
Koga
, “
Molecular simulation of structure formation and rheological properties of mixtures of telechelic and monofunctional associating polymer
,”
J. Polym. Sci. Pt. B Polym. Phys.
56
,
1251
1264
(
2018
).
32.
Amin
,
D.
, and
Z.
Wang
, “
Nonlinear rheology and dynamics of supramolecular polymer networks formed by associative telechelic chains under shear and extensional flows
,”
J. Rheol.
64
,
581
600
(
2020
).
33.
Kremer
,
K.
, and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
,
5057
5086
(
1990
).
34.
Auhl
,
R.
,
R.
Everaers
,
G. S.
Grest
,
K.
Kremer
, and
S. J.
Plimpton
, “
Equilibration of long chain polymer melts in computer simulations
,”
J. Chem. Phys.
119
,
12718
12728
(
2003
).
35.
Eisenberg
,
A.
, “
Clustering of ions in organic polymers: A theoretical approach
,”
Macromolecules
3
,
147
154
(
1970
).
36.
Eisenberg
,
A.
,
B.
Hird
, and
R. B.
Moore
, “
A new multiplet-cluster model for the morphology of random ionomers
,”
Macromolecules
23
,
4098
4107
(
1990
).
37.
Sontjens
,
S. H. M.
,
R. A. E.
Renken
,
G. M. L.
van Gemert
,
T. A. P.
Engels
,
A. W.
Bosman
,
H. M.
Janssen
,
L. E.
Govaert
, and
F. P. T.
Baaijens
, “
Thermoplastic elastomers based on strong and well-defined hydrogen-bonding interactions
,”
Macromolecules
41
,
5703
5708
(
2008
).
38.
Frischknecht
,
A. L.
,
B. A.
Paren
,
L. R.
Middleton
,
J. P.
Koski
,
J. D.
Tarver
,
M.
Tyagi
,
C. L.
Soles
, and
K. I.
Winey
, “
Chain and ion dynamics in precise polyethylene ionomers
,”
Macromolecules
52
,
7939
7950
(
2019
).
39.
Hall
,
L. M.
,
M. J.
Stevens
, and
A. L.
Frischknecht
, “
Dynamics of model ionomer melts of various architectures
,”
Macromolecules
45
,
8097
8108
(
2012
).
40.
Lu
,
K.
,
J. F.
Rudzinski
,
W. G.
Noid
,
S. T.
Milner
, and
J. K.
Maranas
, “
Scaling behavior and local structure of ion aggregates in single-ion conductors
,”
Soft Matter
10
,
978
989
(
2014
).
41.
Lin
,
K.-J.
, and
J. K.
Maranas
, “
Cation coordination and motion in a poly(ethylene oxide)-based single ion conductor
,”
Macromolecules
45
,
6230
6240
(
2012
).
42.
Wilson
,
M.
,
A.
Rabinovitch
, and
A. R. C.
Baljon
, “
Aggregation kinetics of a simulated telechelic polymer
,”
Phys. Rev. E
84
,
061801
(
2011
).
43.
Mordvinkin
,
A.
,
D.
Döhler
,
W. H.
Binder
,
R. H.
Colby
, and
K.
Saalwächter
, “
Terminal flow of cluster-forming supramolecular polymer networks: Single-chain relaxation or micelle reorganization?
,”
Phys. Rev. Lett.
125
,
127801
(
2020
).
44.
Baljon
,
A. R. C.
,
D.
Flynn
, and
D.
Krawzsenek
, “
Numerical study of the gel transition in reversible associating polymers
,”
J. Chem. Phys.
126
,
044907
(
2007
).
45.
Perego
,
A.
, and
F.
Khabaz
, “
Volumetric and rheological properties of vitrimers: A hybrid molecular dynamics and Monte Carlo simulation study
,”
Macromolecules
53
,
8406
8416
(
2020
).
46.
Beers
,
K. M.
, and
N. P.
Balsara
, “
Design of cluster-free polymer electrolyte membranes and implications on proton conductivity
,”
ACS Macro Lett.
1
,
1155
1160
(
2012
).
47.
Kirkmeyer
,
B. P.
,
R. A.
Weiss
, and
K. I.
Winey
, “
Spherical and vesicular ionic aggregates in Zn-neutralized sulfonated polystyrene ionomers
,”
J. Polym. Sci. Pt. B Polym. Phys.
39
,
477
483
(
2001
).
48.
Jangizehi
,
A.
,
M.
Ahmadi
, and
S.
Seiffert
, “
Dynamics of supramolecular associative polymer networks at the interplay of chain entanglement, transient chain association, and chain-sticker clustering
,”
J. Polym. Sci. Pt. B Polym. Phys.
57
,
1209
1223
(
2019
).
49.
Wu
,
S. L.
,
S.
Liu
,
Z. J.
Zhang
, and
Q.
Chen
, “
Dynamics of telechelic ionomers with distribution of number of ionic stickers at chain ends
,”
Macromolecules
52
,
2265
2276
(
2019
).
50.
Brassinne
,
J.
,
A.
Cadix
,
J.
Wilson
, and
E.
van Ruymbeke
, “
Dissociating sticker dynamics from chain relaxation in supramolecular polymer networks—The importance of free partner!
,”
J. Rheol.
61
,
1123
1134
(
2017
).
51.
Everaers
,
R.
,
S. K.
Sukumaran
,
G. S.
Grest
,
C.
Svaneborg
,
A.
Sivasubramanian
, and
K.
Kremer
, “
Rheology and microscopic topology of entangled polymeric liquids
,”
Science
303
,
823
826
(
2004
).
52.
Hsu
,
H.-P.
, and
K.
Kremer
, “
Static and dynamic properties of large polymer melts in equilibrium
,”
J. Chem. Phys.
144
,
154907
(
2016
).
53.
Anderson
,
J. A.
,
C. D.
Lorenz
, and
A.
Travesset
, “
General purpose molecular dynamics simulations fully implemented on graphics processing units
,”
J. Comput. Phys.
227
,
5342
5359
(
2008
).
54.
Glaser
,
J.
,
N.
Trung Dac
,
J. A.
Anderson
,
P.
Lui
,
F.
Spiga
,
J. A.
Millan
,
D. C.
Morse
, and
S. C.
Glotzer
, “
Strong scaling of general-purpose molecular dynamics simulations on GPUs
,”
Comput. Phys. Commun.
192
,
97
107
(
2015
).
55.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
).
56.
Tanaka
,
F.
, and
S. F.
Edwards
, “
Viscoelastic properties of physically crosslinked networks: Part 2. Dynamic mechanical moduli
,”
J. Non-Newtonian Fluid Mech.
43
,
273
288
(
1992
).
57.
Winne
,
J. M.
,
L.
Leibler
, and
F. E.
Du Prez
, “
Dynamic covalent chemistry in polymer networks: A mechanistic perspective
,”
Polym. Chem.
10
,
6091
6108
(
2019
).
58.
Von Meerwall
,
E. D.
,
H.
Lin
, and
W. L.
Mattice
, “
Trace diffusion of alkanes in polyethylene: Spin-echo experiment and Monte Carlo simulation
,”
Macromolecules
40
,
2002
2007
(
2007
).
59.
Von Meerwall
,
E.
,
E. J.
Feick
,
R.
Ozisik
, and
W. L.
Mattice
, “
Diffusion in binary liquid n-alkane and alkane-polyethylene blends
,”
J. Chem. Phys.
111
,
750
757
(
1999
).
60.
Von Meerwall
,
E.
,
S.
Beckman
,
J.
Jang
, and
W. L.
Mattice
, “
Diffusion of liquid n-alkanes: Free-volume and density effects
,”
J. Chem. Phys.
108
,
4299
4304
(
1998
).
61.
Durand
,
M.
,
H.
Meyer
,
O.
Benzerara
,
J.
Baschnagel
, and
O.
Vitrac
, “
Molecular dynamics simulations of the chain dynamics in monodisperse oligomer melts and of the oligomer tracer diffusion in an entangled polymer matrix
,”
J. Chem. Phys.
132
,
194902
(
2010
).
62.
Kuo
,
C.-S.
,
R.
Bansil
, and
C.
Konak
, “
Tracer diffusion of flexible probe macromolecules at the sol-gel transition
,”
Macromolecules
28
,
768
770
(
1995
).
63.
Lewis
,
C. L.
,
K.
Stewart
, and
M.
Anthamatten
, “
The influence of hydrogen bonding side-groups on viscoelastic behavior of linear and network polymers
,”
Macromolecules
47
,
729
740
(
2014
).
64.
Zhang
,
Z.
,
C.
Huang
,
R. A.
Weiss
, and
Q.
Chen
, “
Association energy in strongly associative polymers
,”
J. Rheol.
61
,
1199
1207
(
2017
).
65.
Rapp
,
P. B.
,
A. K.
Omar
,
B. R.
Silverman
,
Z.-G.
Wang
, and
D. A.
Tirrell
, “
Mechanisms of diffusion in associative polymer networks: Evidence for chain hopping
,”
J. Am. Chem. Soc.
140
,
14185
14194
(
2018
).
66.
Colby
,
R. H.
,
X.
Zheng
,
M. H.
Rafailovich
,
J.
Sokolov
,
D. G.
Peiffer
,
S. A.
Schwarz
,
Y.
Strzhemechny
, and
D.
Nguyen
, “
Dynamics of lightly sulfonated polystyrene ionomers
,”
Phys. Rev. Lett.
81
,
3876
3879
(
1998
).
67.
Ramirez
,
J.
,
S. K.
Sukumaran
,
B.
Vorselaars
, and
A. E.
Likhtman
, “
Efficient on the fly calculation of time correlation functions in computer simulations
,”
J. Chem. Phys.
133
, 1–12 (
2010
).
68.
Doi
,
M.
,
Introduction to Polymer Physics
(
Oxford University
,
1996
).
69.
Zhong
,
M.
,
R.
Wang
,
K.
Kawamoto
,
B. D.
Olsen
, and
J. A.
Johnson
, “
Quantifying the impact of molecular defects on polymer network elasticity
,”
Science
353
,
1264
1268
(
2016
).
70.
Goldansaz
,
H.
,
C.-A.
Fustin
,
M.
Wubbenhorst
, and
E.
van Ruymbeke
, “
How supramolecular assemblies control dynamics of associative polymers: Toward a general picture
,”
Macromolecules
49
,
1890
1902
(
2016
).
71.
Ahmadi
,
M.
,
A.
Jangizehi
,
E.
van Ruymbeke
, and
S.
Seiffert
, “
Deconvolution of the effects of binary associations and collective assemblies on the rheological properties of entangled side-chain supramolecular polymer networks
,”
Macromolecules
52
,
5255
5267
(
2019
).
72.
Golkaram
,
M.
,
C.
Fodor
,
E.
van Ruymbeke
, and
K.
Loos
, “
Linear viscoelasticity of weakly hydrogen-bonded polymers near and below the sol-gel transition
,”
Macromolecules
51
,
4910
4916
(
2018
).
73.
Weiss
,
R. A.
, and
H. Y.
Zhao
, “
Rheological behavior of oligomeric ionomers
,”
J. Rheol.
53
,
191
213
(
2009
).
74.
Castellano
,
R. K.
,
R.
Clark
,
S. L.
Craig
,
C.
Nuckolls
, and
J.
Rebek
, “
Emergent mechanical properties of self-assembled polymeric capsules
,”
Proc. Natl. Acad. Sci. U.S.A.
97
,
12418
12421
(
2000
).
75.
Freitas
,
L. L. D.
, and
R.
Stadler
, “
Thermoplastic elastomers by hydrogen bonding. 3. Interrelations between molecular parameters and rheological properties
,”
Macromolecules
20
,
2478
2485
(
1987
).
76.
Kwon
,
Y.
,
Y.
Matsumiya
, and
H.
Watanabe
, “
Dielectric relaxation of type-A chains undergoing head-to-tail association/dissociation: Difference from head-to-head case and correlation with viscoelastic relaxation
,”
Macromolecules
52
,
8484
8502
(
2019
).
77.
Watanabe
,
H.
,
Y.
Matsumiya
, and
Y.
Kwon
, “
Dynamics of Rouse chains undergoing head-to-head association and dissociation: Difference between dielectric and viscoelastic relaxation
,”
J. Rheol.
61
,
1151
1170
(
2017
).
78.
Webb
,
M. A.
,
U.
Yamamoto
,
B. M.
Savoie
,
Z.-G.
Wang
, and
T. F.
Miller
 III
, “
Globally suppressed dynamics in ion-doped polymers
,”
ACS Macro Lett.
7
,
734
738
(
2018
).
79.
Chompff
,
A. J.
, and
J. A.
Duiser
, “
Viscoelasticity of networks consisting of crosslinked or entangled macromolecules. I. Normal modes and mechanical spectra
,”
J. Chem. Phys.
45
,
1505
1514
(
1966
).
80.
Chompff
,
A. J.
, and
W.
Prins
, “
Viscoelasticity of networks consisting of crosslinked or entangled macromolecules. II. Verification of the theory for entanglement networks
,”
J. Chem. Phys.
48
,
235
243
(
1968
).
81.
Hong
,
S. D.
,
D.
Soong
, and
M.
Shen
, “
Viscoelastic properties of entangled polymers: The transient network model
,”
J. Appl. Phys.
48
,
4019
4025
(
1977
).
82.
Qiao
,
X. Y.
, and
R. A.
Weiss
, “
Nonlinear rheology of lightly sulfonated polystyrene ionomers
,”
Macromolecules
46
,
2417
2424
(
2013
).
83.
Huang
,
C. W.
,
Q.
Chen
, and
R. A.
Weiss
, “
Nonlinear rheology of random sulfonated polystyrene iononners: The role of the sol-gel transition
,”
Macromolecules
49
,
9203
9214
(
2016
).
84.
Feldman
,
K. E.
,
M. J.
Kade
,
E. W.
Meijer
,
C. J.
Hawker
, and
E. J.
Kramer
, “
Model transient networks from strongly hydrogen-bonded polymers
,”
Macromolecules
42
,
9072
9081
(
2009
).
85.
Rico-Valverde
,
J. C.
, and
E. J.
Jimenez-Regalado
, “
Synthesis, characterization and rheological properties, as a function of temperature, of three associative polymers with different microstructure obtained by solution polymerization
,”
Polym. Bull.
62
,
57
67
(
2009
).
86.
Regalado
,
E. J.
,
J.
Selb
, and
F.
Candau
, “
Viscoelastic behavior of semidilute solutions of multisticker polymer chains
,”
Macromolecules
32
,
8580
8588
(
1999
).
87.
Volpert
,
E.
,
J.
Selb
, and
F.
Candau
, “
Influence of the hydrophobe structure on composition, microstructure, and rheology in associating polyacrylamides prepared by micellar copolymerization
,”
Macromolecules
29
,
1452
1463
(
1996
).
88.
Golkaram
,
M.
, and
K.
Loos
, “
A critical approach to polymer dynamics in supramolecular polymers
,”
Macromolecules
52
,
9427
9444
(
2019
).
89.
See supplementary material at https://www.scitation.org/doi/suppl/10.1122/8.0000218 for the description of LJ units, some details about the simulation model, numerical methods in characterization, tracer diffusion behavior, modulus and segmental diffusion functions for the rest of associative parameters, discussion on the effective chain center, and the effect of random localization of stickers, as mentioned in the context.

Supplementary Material

You do not currently have access to this content.