Polyelectrolyte (PE) solutions, which are charged polymers in polar solvents, are ubiquitous and essential to life. Due to the electrostatic interactions among the charged monomers and mobile ions, the dependence of the rheological properties on the polymer concentration of PE solutions differs significantly from that of solutions of uncharged macromolecules. In addition, salt in PE solutions, whether added intentionally or intrinsically present, can affect the properties of the solutions. Here, we analyze the ion distribution near a monomer using the nonlinear Poisson–Boltzmann equation for scenarios with nonoverlapping and overlapping electric double layers. Consequently, by incorporating the electrostatic interactions into the blob model and Zimm–Rouse dynamic model, we obtain different scaling laws for the electrostatic energy per monomer, correlation length, end-to-end distance, relaxation time and viscosity η of semidilute, unentangled PE solutions in consecutive regimes of polymer concentration np, and salt concentration ns, which are summarized in tables. With our theory, we anticipate that the empirical Fuoss law ηnp1/2 is expected for solutions prepared with salt-contaminated PE samples, while ηnp0.68 might be found for those with purer PE samples. A new critical charge fraction φc is defined, where we predict that the peak, which is present in the measurements of the reduced viscosity η/np as a function of np, is only expected for weakly charged PEs φ<φc prepared with pure PE samples. Comparisons with the experimental data as well as the classical scaling theories are provided, and the range of applicability of the theory is discussed.

1.
Dobrynin
,
A. V.
, and
M.
Rubinstein
, “
Theory of polyelectrolytes in solutions and at surfaces
,”
Prog. Polym. Sci.
30
,
1049
1118
(
2005
).
2.
Colby
,
R. H.
, “
Structure and linear viscoelasticity of flexible polymer solutions: Comparison of polyelectrolyte and neutral polymer solutions
,”
Rheol. Acta
49
,
425
442
(
2010
).
3.
Muthukumar
,
M.
, “
50th anniversary perspective: A perspective on polyelectrolyte solutions
,”
Macromolecules
50
,
9528
9560
(
2017
).
4.
Onsager
,
L.
, “
The effects of shape on the interaction of colloidal particles
,”
Ann. N. Y. Acad. Sci.
51
,
627
659
(
1949
).
5.
Katchalsky
,
A.
, “
Polyelectrolytes
,”
Pure Appl. Chem.
26
,
327
374
(
1971
).
6.
Alexandrowicz
,
Z.
, and
A.
Katchalsky
, “
Colligative properties of polyelectrolyte solutions in excess of salt
,”
J. Polym. Sci. A
1
,
3231
3260
(
1963
).
7.
Fuoss
,
R. M.
,
A.
Katchalsky
, and
S.
Lifson
, “
The potential of an infinite rod-like molecule and the distribution of counterions
,”
Proc. Natl. Acad. Sci. U.S.A.
37
,
579
589
(
1951
).
8.
Förster
,
S.
, and
M.
Schmidt
, Polyelectrolytes in Solution, Advances in Polymer Science Vol. 120 (Springer, 1995), pp. 55–133.
9.
Odijk
,
T.
, “
Statics and dynamics of condensed DNA within phages and globules
,”
Philos. Trans. R. Soc., A
362
,
1497
1517
(
2004
).
10.
de Gennes
,
P. G.
,
P.
Pincus
,
R. M.
Velasco
, and
F.
Brochard
, “
Remarks on polyelectrolyte conformation
,”
J. Phys. (Paris)
37
,
1461
1473
(
1976
).
11.
Fuoss
,
R. M.
, “
Polyelectrolytes
,”
Discuss. Faraday Soc.
11
,
125
134
(
1951
).
12.
Fuoss
,
R. M.
, and
U. P.
Strauss
, “
The viscosity of mixtures of polyelectrolytes and simple electrolytes
,”
Ann. N. Y. Acad. Sci.
51
,
836
851
(
1949
).
13.
Rubinstein
,
M.
,
R. H.
Colby
, and
A. V.
Dobrynin
, “
Dynamics of semidilute polyelectrolyte solutions
,”
Phys. Rev. Lett.
73
,
2776
2779
(
1994
).
14.
Dobrynin
,
A. V.
,
R. H.
Colby
, and
M.
Rubinstein
, “
Scaling theory of polyelectrolyte solutions
,”
Macromolecules
28
,
1859
1871
(
1995
).
15.
Muthukumar
,
M.
, “
Dynamics of polyelectrolyte solutions
,”
J. Chem. Phys.
107
,
2619
2635
(
1997
).
16.
Booth
,
F.
, “
The electroviscous effect for suspensions of solid spherical particles
,”
Proc. R. Soc. Lond., Ser. A
203
,
533
551
(
1950
).
17.
Vink
,
H.
, “
Viscosity of polyelectrolyte solutions
,”
Makromol. Chem.
131
,
133
145
(
1970
).
18.
Eisenberg
,
H.
, “
Viscosities of dilute aqueous solutions of a partially quaternized poly-4-vinylpyridine at low gradients of flow
,”
J. Polym. Sci.
13
,
85
91
(
1954
).
19.
Nishida
,
K.
,
K.
Kaji
, and
T.
Kanaya
, “
Theroretical calculation of reduced viscosity of polyelectrolyte solutions
,”
Polymer
42
,
8657
8662
(
2001
).
20.
Ashok
,
B.
, and
M.
Muthukumar
, “
Crossover behavior of the viscosity of dilute and semidilute polyelectrolyte solutions
,”
J. Phys. Chem. B
113
,
5736
5745
(
2009
).
21.
Cohen
,
J.
,
Z.
Priel
, and
Y.
Rabin
, “
Viscosity of dilute polyelectrolyte solutions
,”
J. Chem. Phys.
88
,
7111
7116
(
1988
).
22.
Krause
,
W. E.
,
J. S.
Tan
, and
R. H.
Colby
, “
Semidilute solution rheology of polyelectrolytes with no added salt
,”
J. Polym. Sci. B
37
,
3429
3437
(
1999
).
23.
Boris
,
D. C.
, and
R. H.
Colby
, “
Rheology of sulfonated polystyrene solutions
,”
Macromolecules
31
,
5746
5755
(
1998
).
24.
Dou
,
S.
, and
R. H.
Colby
, “
Charge density effects in salt-free polyelectrolyte solution rheology
,”
J. Polym. Sci. B
44
,
2001
2013
(
2006
).
25.
Lopez
,
C. G.
, and
W.
Richtering
, “
Viscosity of semidilute and concentrated nonentangled flexible polyelectrolytes in salt-free solution
,”
J. Phys. Chem. B
123
,
5626
5634
(
2019
).
26.
Prini
,
R. F.
, and
A. E.
Lagos
, “
Tracer diffusion, electrical conductivity, and viscosity of aqueous solutions of polystyrenesulfonates
,”
J. Polym. Sci. A
2
,
2917
2928
(
1964
).
27.
Oostwal
,
M.
, and
T.
Odijk
, “
Novel dynamic scaling hypothesis for semidilute and concentrated solutions of polymers and polyelectrolytes
,”
Macromolecules
26
,
6489
6497
(
1993
).
28.
Kujawa
,
P.
,
A.
Audibert-Hayet
,
J.
Selb
, and
F.
Candau
, “
Effect of ionic strength on the rheological properties of multisticker associative polyelectrolytes
,”
Macromolecules
39
,
384
392
(
2006
).
29.
Lopez
,
C. G.
, S,
E.
Rogers
,
R. H.
Colby
,
P.
Graham
, and
J. T.
Cabral
, “
Structure of sodium carboxymethyl cellulose aqueous solutions: A SANS and rheology study
,”
J. Polym. Sci., Part B: Polym. Phys.
53
,
492
501
(
2015
).
30.
Lopez
,
C. G.
,
R. H.
Colby
,
P.
Graham
, and
J. T.
Cabral
, “
Viscosity and scaling of semiflexible polyelectrolyte NaCMC in aqueous salt solutions
,”
Macromolecules
50
,
332
338
(
2017
).
31.
Lopez
,
C. G.
, “
Entanglement properties of polyelectrolytes in salt-free and excess-salt solutions
,”
ACS Macro Lett.
8
,
979
983
(
2019
).
32.
Jimenez
,
L. N.
,
C. D. V.
Martínez Narváez
, and
V.
Sharma
, “
Capillary breakup and extensional rheology response of food thickener cellulose gum (NaCMC) in salt-free and excess salt solutions
,”
Phys. Fluids
32
,
012113
(
2020
).
33.
Dubrovskii
,
S.
,
A.
Zelenetskii
,
S.
Uspenskii
, and
V.
Khabarov
, “
Effect of borax additives on the rheological properties of sodium hyaluronate aqueous solutions
,”
Polym. Sci., Ser. A
56
,
205
210
(
2014
).
34.
Del Giudice
,
F.
,
V.
Calcagno
,
V. E.
Taliento
,
F.
Greco
,
P. A.
Netti
, and
P. L.
Maffettone
, “
Relaxation time of polyelectrolyte solutions: When -rheometry steps in charge
,”
J. Rheol.
61
,
13
21
(
2017
).
35.
Chen
,
G.
,
A.
Perazzo
, and
H. A.
Stone
, “
Influence of salt on the viscosity of polyelectrolyte solutions
,”
Phys. Rev. Lett.
124
,
177801
(
2020
).
36.
Daoud
,
M.
,
J. P.
Cotton
,
B.
Farnoux
,
G.
Jannink
,
G.
Sarma
,
H.
Benoit
,
R.
Duplessix
,
C.
Picot
, and
P. G.
de Gennes
, “
Solutions of flexible polymers. Neutron experiments and interpretation
,”
Macromolecules
8
,
804
818
(
1975
).
37.
de Gennes
,
P. G.
,
Scaling Concepts in Polymer Physics
(
Cornell University
,
Ithaca, NY
,
1976
).
38.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
39.
Doi
,
M.
,
Soft Matter Physics
(
Oxford University
,
Oxford
,
2013
).
40.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
).
41.
Zimm
,
B. H.
, “
Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss
,”
J. Chem. Phys.
24
,
269
278
(
1956
).
42.
Rouse
,
P. E.
, “
A theory of the linear viscoelastic properties of dilute solutions of coiling polymers
,”
J. Chem. Phys.
21
,
1272
1280
(
1953
).
43.
Wennerström
,
H.
, “
Electrostatic interactions in concentrated colloidal dispersions
,”
Phys. Chem. Chem. Phys.
19
,
23849
23853
(
2017
).
44.
Hansen
,
J. P.
, and
E.
Trizac
, “
Electric double layers around finite-size clay particles
,”
Physica A
235
,
257
268
(
1997
).
45.
Manning
,
G. S.
, “
Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties
,”
J. Chem. Phys.
51
,
924
933
(
1969
).
46.
Manning
,
G. S.
, “
Limiting laws and counterion condensation in polyelectrolyte solutions II. Self-diffusion of the small ions
,”
J. Chem. Phys.
51
,
934
938
(
1969
).
47.
Manning
,
G. S.
, “
Limiting laws and counterion condensation in polyelectrolyte solutions III. An analysis based on the Mayer ionic solution theory
,”
J. Chem. Phys.
51
,
3249
3252
(
1969
).
48.
Gupta
,
A.
, and
H. A.
Stone
, “
Electrical double layers: Effect of asymmetry in electrolyte valence on steric effects, dielectric decrement and ion-ion correlations
,”
Langmuir
34
,
11971
11985
(
2018
).
49.
Kilic
,
M. S.
,
M. Z.
Bazant
, and
A.
Ajdari
, “
Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging
,”
Phys. Rev. E
75
,
021502
(
2007
).
50.
Nakayama
,
Y.
, and
D.
Andelman
, “
Differential capacitance of the electric double layer: The interplay between ion finite size and dielectric decrement
,”
J. Chem. Phys.
142
,
044706
(
2015
).
51.
Poon
,
W. C. K.
, and
D.
Andelman
,
Soft Condensed Matter Physics in Molecular and Cell Biology
(
Taylor and Francis
,
London
,
2006
).
52.
Naydenov
,
A.
,
P. A.
Pincus
, and
S. A.
Safran
, “
Equilibrium domains on heterogeneously charged surfaces
,”
Langmuir
23
,
12016
(
2007
).
53.
Fogolari
,
F.
, and
J. M.
Briggs
, “
On the variational approach to Poisson–Boltzmann free energies
,”
Chem. Phys. Lett.
281
,
135
139
(
1997
).
54.
Ben-Yaakov
,
D.
,
D.
Andelman
,
D.
Harries
, and
R.
Podgornik
, “
Ions in mixed dielectric solvents: Density profiles and osmotic pressure between charged interfaces
,”
J. Phys. Chem. B
113
,
6001
6011
(
2009
).
55.
Poggioli
,
A. R.
,
A.
Siria
, and
L.
Bocquet
, “
Beyond the tradeoff: Dynamic selectivity in ionic transport and current rectification
,”
J. Phys. Chem. B
123
,
1171
1185
(
2019
).
56.
Hunter
,
R. J.
,
Zeta Potential in Colloid Science
(
Academic
,
London
,
1981
).
57.
Derjaguin
,
B. V.
, and
L.
Landau
, “
Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes
,”
Prog. Surf. Sci.
43
,
30
59
(
1993
).
58.
Verwey
,
E. J. W.
, and
J. T. G.
Overbeek
,
Theory of the Stability of Lyophobic Colloids
(
Dover
,
New York
,
1999
).
59.
Walker
,
D. A.
,
B.
Kowalczyk
,
M.
Olvera de la Cruz
, and
B. A.
Grzybowski
, “
Electrostatics at the nanoscale
,”
Nanoscale
3
,
1316
1344
(
2011
).
60.
Greathouse
,
J. A.
,
S. E.
Feller
, and
D. A.
McQuarrie
, “
The modified Gouy-Chapman theory: Comparisons between electrical double layer models of clay swelling
,”
Langmuir
10
,
2125
2130
(
1994
).
61.
Moreira
,
A. G.
, and
R. R.
Netz
, “
Binding of similarly charged plates with counterions only
,”
Phys. Rev. Lett.
87
,
078301
(
2001
).
62.
Netz
,
R. R.
, “
Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory
,”
Eur. Phys. J. E
5
,
557
574
(
2001
).
63.
Attard
,
P.
, “
Electrolytes and the electric double layer
,” in
Advances in Chemical Physics
, edited by I. Prigogine and S. A. Rice, (John Wiley & Sons, Inc., 1996), Volume 92.
64.
Ohshima
,
H.
,
Electrical Phenomena at Interfaces and Biointerfaces
(
Wiley
,
New York
,
2012
).
65.
Qu
,
W.
, and
D.
Li
, “
A model for overlapping EDL fields
,”
J. Colloid Interface Sci.
224
,
397
407
(
2000
).
66.
Baldessari
,
F.
, and
J. G.
Santiago
, “
Electrokinetics in nanochannels—Part I. Electric double layer overlap and channel-to-well equilibrium
,”
J. Colloid Interface Sci.
325
,
526
538
(
2008
).
67.
Schoch
,
R. B.
,
J.
Han
, and
P.
Renaud
, “
Transport phenomena in nanofluidics
,”
Rev. Mod. Phys.
80
,
839
883
(
2008
).
68.
Overbeek
,
J. T. G.
, and
D.
Stigter
, “
The energetics of highly charged spherical micelles as applied to sodium lauryl sulphate
,”
Rec. Trav. Chim. Pays Bas.
75
,
1263
1284
(
1956
).
69.
Stigter
,
D.
, “
The charged colloidal cylinder with a Gouy double layer
,”
J. Colloid Interface Sci.
53
,
296
306
(
1975
).
70.
Trizac
,
E.
, and
G.
Téllez
, “
Onsager-Manning-Osawa condensation phenomenon and the effect of salt
,”
Phys. Rev. Lett.
96
,
038302
(
2006
).
71.
Beer
,
M.
,
M.
Schmidt
, and
M.
Muthukumar
, “
The electrostatic expansion of linear polyelectrolytes: Effects of gegeions, co-ions, and hydrophobicity
,”
Macromolecules
30
,
8375
8385
(
1997
).
72.
Liao
,
Q.
,
J. Y.
Carrillo
,
A. V.
Dobrynin
, and
M.
Rubinstein
, “
Rouse dynamics of polyelectrolyte solutions: Molecular dynamics study
,”
Macromolecules
40
,
7671
7679
(
2007
).
73.
Stevens
,
M. J.
, and
K.
Kremer
, “
The nature of flexible linear polyelectrolytes in salt free solution: A molecular dynamics study
,”
J. Chem. Phys.
103
,
1669
1690
(
1995
).
74.
Ou
,
Z.
, and
M.
Muthukumar
, “
Langevin dynamics of semiflexible polyelectrolytes: Rod-toroid-globule-coil structures and counterion distribution
,”
J. Chem. Phys.
123
,
074905
(
2005
).
75.
Pfeuty
,
P.
, “
Conformation des polyelectrolytes ordre dans les solutions de polyelectrolytes
,”
J. Phys. Colloq.
39
,
C2
149
(
1978
).
76.
Yu
,
F.
,
F.
Zhang
,
T.
Luan
,
Z.
Zhang
, and
H.
Zhang
, “
Rheological studies of hyaluronan solutions based on the scaling law and constitutive models
,”
Polymer
55
,
295
301
(
2014
).
77.
Inagaki
,
H.
,
H.
Sakurai
, and
T.
Sasaki
, “
Distinct maximum appearing in the viscosity curve of dilute polyelectrolyte solutions
,”
Bulletin of the Institute for Chemical Research, Kyoto University
34
(
1–2
),
74
86
(
1956
). http://hdl.handle.net/2433/75541.
You do not currently have access to this content.