Colloidal gels made of carbon black particles dispersed in light mineral oil are “rheo-acoustic” materials, i.e., their mechanical and structural properties can be tuned using high-power ultrasound, sound waves with submicrometer amplitude and frequencies larger than 20 kHz. The effects of high-power ultrasound on the carbon black gel are demonstrated using two experiments: rheology coupled to ultrasound to test for the gel mechanical response and a time-resolved ultra-small-angle x-ray scattering experiment (TRUSAXS) coupled to ultrasound to test for structural changes within the gel. We show that high-power ultrasound above a critical amplitude leads to a complex viscoelastic transient response of the gels within a few seconds: a softening of its storage modulus accompanied by a strong overshoot in its loss modulus. Under high-power ultrasound, the gel displays a viscoelastic spectrum with glasslike features and a significant decrease in its yield strain. Those effects are attributed to the formation of intermittent microcracks in the bulk of the gel as evidenced by TRUSAXS. Provided that the shear rate is not large enough to fully fluidize the sample, high-power ultrasound also facilitates the flow of the gel, reducing its yield stress as well as increasing the shear-thinning index, thanks again to the formation of microcracks.

1.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University
,
New York
,
1999
).
2.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University
,
Cambridge
,
2012
).
3.
Gibaud
,
T.
,
T.
Divoux
, and
S.
Manneville
, Nonlinear mechanics of colloidal gels: Creep, fatigue, and shear-induced yielding, in Encyclopedia of Complexity and Systems Science, edited by R. A. Meyers (Springer, Berlin, 2020), pp. 1–24.
4.
Balmforth
,
N.
,
I.
Frigaard
, and
G.
Ovarlez
, “
Yielding to stress: Recent developments in viscoplastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
46
,
121
146
(
2014
).
5.
Bonn
,
D.
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
035005
(
2017
).
6.
Lootens
,
D.
,
P.
Hébraud
,
E.
Lécolier
, and
H.
Van Damme
, “
Gelation, shear-thinning and shear-thickening in cement slurries
,”
Oil Gas Sci. Technol.
59
,
31
40
(
2004
).
7.
Ioannidou
,
K.
,
M.
Kanduc
,
L.
Li
,
D.
Frenkel
,
J.
Dobnikar
, and
E. D.
Gado
, “
The crucial effect of early-stage gelation on the mechanical properties of cement hydrates
,”
Nat. Commun.
7
,
12106
(
2016
).
8.
Mezzenga
,
R.
,
P.
Schurtenberger
,
A.
Burbidge
, and
M.
Michel
, “
Understanding foods as soft materials
,”
Nat. Mater.
4
,
729
740
(
2005
).
9.
Gibaud
,
T.
,
N.
Mahmoudi
,
J.
Oberdisse
,
P.
Lindner
,
J. S.
Pedersen
,
C. L.
Oliveira
,
A.
Stradner
, and
P.
Schurtenberger
, “
New routes to food gels and glasses
,”
Faraday Discuss.
158
,
267
284
(
2012
).
10.
Lewis
,
J. A.
, “
Direct-write assembly of ceramics from colloidal inks
,”
Curr. Opin. Solid State Mater. Sci.
6
,
245
250
(
2002
).
11.
Smay
,
J. E.
,
J.
Cesarano
, and
J. A.
Lewis
, “
Colloidal inks for directed assembly of 3-D periodic structures
,”
Langmuir
18
,
5429
5437
(
2002
).
12.
Tan
,
A. T. L.
,
J.
Beroz
,
M.
Kolle
, and
A. J.
Hart
, “
Direct-write freeform colloidal assembly
,”
Adv. Mater.
30
,
1803620
(
2018
).
13.
Youssry
,
M.
,
L.
Madec
,
P.
Soudan
,
M.
Cerbelaud
,
D.
Guyomard
, and
B.
Lestriez
, “
Non-aqueous carbon black suspensions for lithium-based redox flow batteries: Rheology and simultaneous rheo-electrical behavior
,”
Phys. Chem. Chem. Phys.
15
,
14476
14486
(
2013
).
14.
Fan
,
F. Y.
,
W. H.
Woodford
,
Z.
Li
,
N.
Baram
,
K. C.
Smith
,
A.
Helal
,
G. H.
McKinley
,
W. C.
Carter
, and
Y.-M.
Chiang
, “
Polysulfide flow batteries enabled by percolating nanoscale conductor networks
,”
Nano Lett.
14
,
2210
2218
(
2014
).
15.
Helal
,
A.
,
T.
Divoux
, and
G. H.
McKinley
, “
Simultaneous rheoelectric measurements of strongly conductive complex fluids
,”
Phys. Rev. Appl.
6
,
064004
(
2016
).
16.
Narayanan
,
A.
,
F.
Mugele
, and
M. H. G.
Duits
, “
Mechanical history dependence in carbon black suspensions for flow batteries: A rheo-impedance study
,”
Langmuir
33
,
1629
1638
(
2017
).
17.
Gibaud
,
T.
,
N.
Dagès
,
P.
Lidon
,
G.
Jung
,
L. C.
Ahouré
,
M.
Sztucki
,
A.
Poulesquen
,
N.
Hengl
,
F.
Pignon
, and
S.
Manneville
, “
Rheoacoustic gels: Tuning mechanical and flow properties of colloidal gels with ultrasonic vibrations
,”
Phys. Rev. X
10
,
011028
(
2020
).
18.
Gibaud
,
T.
,
D.
Frelat
, and
S.
Manneville
, “
Heterogeneous yielding dynamics in a colloidal gel
,”
Soft Matter
6
,
3482
3488
(
2010
).
19.
Trappe
,
V.
,
E.
Pitard
,
L.
Ramos
,
A.
Robert
,
H.
Bissig
, and
L.
Cipelletti
, “
Investigation of q-dependent dynamical heterogeneity in a colloidal gel by x-ray photon correlation spectroscopy
,”
Phys. Rev. E
76
,
051404
(
2007
).
20.
Hartley
,
P.
, and
G.
Parfitt
, “
Dispersion of powders in liquids, 1. The contribution of the van der Waals force to the cohesiveness of carbon black powders
,”
Langmuir
1
,
651
657
(
1985
).
21.
Osuji
,
C. O.
,
C.
Kim
, and
D. A.
Weitz
, “
Shear thickening and scaling of the elastic modulus in a fractal colloidal system with attractive interactions
,”
Phys. Rev. E
77
,
060402(R)
(
2008
).
22.
Ovarlez
,
G.
,
L.
Tocquer
,
F.
Bertrand
, and
P.
Coussot
, “
Rheopexy and tunable yield stress of carbon black suspensions
,”
Soft Matter
9
,
5540
5549
(
2013
).
23.
Richards
,
J. J.
,
J. B.
Hipp
,
J. K.
Riley
,
N. J.
Wagner
, and
P. D.
Butler
, “
Clustering and percolation in suspensions of carbon black
,”
Langmuir
33
,
12260
12266
(
2017
).
24.
Hipp
,
J. B.
,
J. J.
Richards
, and
N. J.
Wagner
, “
Structure-property relationships of sheared carbon black suspensions determined by simultaneous rheological and neutron scattering measurements
,”
J. Rheol.
63
,
423
436
(
2019
).
25.
Grenard
,
V.
,
T.
Divoux
,
N.
Taberlet
, and
S.
Manneville
, “
Timescales in creep and yielding of attractive gels
,”
Soft Matter
10
,
1555
1571
(
2014
).
26.
Gibaud
,
T.
,
C.
Perge
,
S. B.
Lindström
,
N.
Taberlet
, and
S.
Manneville
, “
Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress
,”
Soft Matter
12
,
1701
1712
(
2016
).
27.
Perge
,
C.
,
N.
Taberlet
,
T.
Gibaud
, and
S.
Manneville
, “
Time dependence in large amplitude oscillatory shear: A rheo-ultrasonic study of fatigue dynamics in a colloidal gel
,”
J. Rheol.
58
,
1331
1357
(
2014
).
28.
Narayanan
,
T.
,
M.
Sztucki
,
P.
Van Vaerenbergh
,
J.
Léonardon
,
J.
Gorini
,
L.
Claustre
,
F.
Sever
,
J.
Morse
, and
P.
Boesecke
, “
A multipurpose instrument for time-resolved ultra-small-angle and coherent x-ray scattering
,”
J. Appl. Crystallogr.
51
,
1511
1524
(
2018
).
29.
Ehrburger-Dolle
,
F.
,
S.
Misono
, and
J.
Lahaye
, “
Characterization of the aggregate void structure of carbon blacks by thermoporometry
,”
J. Colloid Interface Sci.
135
,
468
485
(
1990
).
30.
Sorensen
,
C.
,
J.
Cai
, and
N.
Lu
, “
Test of static structure factors for describing light scattering from fractal soot aggregates
,”
Langmuir
8
,
2064
2069
(
1992
).
31.
Won
,
Y.-Y.
,
S. P.
Meeker
,
V.
Trappe
,
D. A.
Weitz
,
N. Z.
Diggs
, and
J. I.
Emert
, “
Effect of temperature on carbon-black agglomeration in hydrocarbon liquid with adsorbed dispersant
,”
Langmuir
21
,
924
932
(
2005
).
32.
Jin
,
Y.
,
N.
Hengl
,
S.
Baup
,
F.
Pignon
,
N.
Gondrexon
,
A.
Magnin
,
M.
Sztucki
,
T.
Narayanan
,
L.
Michot
, and
B.
Cabane
, “
Effects of ultrasound on colloidal organization at nanometer length scale during cross-flow ultrafiltration probed by in-situ SAXS
,”
J. Membr. Sci.
453
,
624
635
(
2014
).
33.
Jin
,
Y.
,
N.
Hengl
,
S.
Baup
,
F.
Pignon
,
N.
Gondrexon
,
M.
Sztucki
,
G.
Gesan-Guiziou
,
A.
Magnin
,
M.
Abyan
,
M.
Karrouch
et al.,
Effects of ultrasound on cross-flow ultrafiltration of skim milk: Characterization from macro-scale to nano-scale
,”
J. Membr. Sci.
470
,
205
218
(
2014
).
34.
Jin
,
Y.
,
N.
Hengl
,
S.
Baup
,
F.
Pignon
,
N.
Gondrexon
,
M.
Sztucki
,
A.
Romdhane
,
A.
Guillet
, and
M.
Aurousseau
, “
Ultrasonic assisted cross-flow ultrafiltration of starch and cellulose nanocrystals suspensions: Characterization at multi-scales
,”
Carbohydr. Polym.
124
,
66
76
(
2015
).
35.
Beaucage
,
C.
, and
D. W.
Schaefer
, “
Structural studies of complex systems using small-angle scattering: A unified Guinier/power-law approach
,”
J. Non-Cryst. Solids
172
,
797
805
(
1994
).
36.
Cipelletti
,
L.
,
K.
Martens
, and
L.
Ramos
, “
Microscopic precursors of failure in soft matter
,”
Soft Matter
16
,
82
93
(
2020
).
37.
Mason
,
T.
,
J.
Bibette
, and
D.
Weitz
, “
Elasticity of compressed emulsions
,”
Phys. Rev. Lett.
75
,
2051
(
1995
).
38.
Mason
,
T.
, and
D.
Weitz
, “
Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition
,”
Phys. Rev. Lett.
75
,
2770
(
1995
).
39.
Winter
,
H. H.
, “
Glass transition as the rheological inverse of gelation
,”
Macromolecules
46
,
2425
2432
(
2013
).
40.
Zaccone
,
A.
,
H.
Winter
,
M.
Siebenbürger
, and
M.
Ballauff
, “
Linking self-assembly, rheology, and gel transition in attractive colloids
,”
J. Rheol.
58
,
1219
1244
(
2014
).
41.
Meeker
,
S. P.
,
R. T.
Bonnecaze
, and
M.
Cloitre
, “
Slip and flow in pastes of soft particles: Direct observation and rheology
,”
J. Rheol.
48
,
1295
1320
(
2004
).
42.
Divoux
,
T.
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
,
018304
(
2013
).
43.
Herschel
,
W. H.
, and
R.
Bulkley
, “
Konsistenzmessungen von Gummi-Benzollösungen
,”
Colloid Polym. Sci.
39
,
291
300
(
1926
).
44.
Seth
,
J. R.
,
M.
Cloitre
, and
R. T.
Bonnecaze
, “
Influence of short-range forces on wall-slip in microgel pastes
,”
J. Rheol.
52
,
1241
1268
(
2008
).
45.
Seth
,
J. R.
,
C.
Locatelli-Champagne
,
F.
Monti
,
R. T.
Bonnecaze
, and
M.
Cloitre
, “
How do soft particle glasses yield and flow near solid surfaces?
,”
Soft Matter
8
,
140
148
(
2012
).
46.
Radhakrishnan
,
R.
,
T.
Divoux
,
S.
Manneville
, and
S. M.
Fielding
, “
Understanding rheological hysteresis in soft glassy materials
,”
Soft Matter
13
,
1834
1852
(
2017
).
47.
Koumakis
,
N.
,
E.
Moghimi
,
R.
Besseling
,
W. C.
Poon
,
J. F.
Brady
, and
G.
Petekidis
, “
Tuning colloidal gels by shear
,”
Soft Matter
11
,
4640
4648
(
2015
).
48.
Keim
,
N. C.
,
J. D.
Paulsen
, and
S. R.
Nagel
, “
Multiple transient memories in sheared suspensions: Robustness, structure, and routes to plasticity
,”
Phys. Rev. E
88
,
032306
(
2013
).
49.
Mukherji
,
S.
,
N.
Kandula
,
A. K.
Sood
, and
R.
Ganapathy
, “
Strength of mechanical memories is maximal at the yield point of a soft glass
,”
Phys. Rev. Lett.
122
,
158001
(
2019
).
50.
Lee
,
J. C.-W.
,
K. M.
Weigandt
,
E. G.
Kelley
, and
S. A.
Rogers
, “
Structure-property relationships via recovery rheology in viscoelastic materials
,”
Phys. Rev. Lett.
122
,
248003
(
2019
).
51.
Donley
,
G. J.
,
P. K.
Singh
,
A.
Shetty
, and
S. A.
Rogers
, “
Elucidating the G overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
21945
21952
(
2020
).
You do not currently have access to this content.