Linear and nonlinear viscoelastic approaches are used to study multiphase biobased blends of poly(lactic acid), poly(amide 11), poly(ether-b-amide) (PEBA), and poly(ethylene oxide) (PEO) in a wide range of compositions. The novelty of this work resides in (a) the study of hybrid quaternary blends with droplet-matrix as well as cocontinuous morphology, (b) the effect of the PEO and PEBA blend components on the rheological properties, and (c) the investigation of the nonlinear viscoelastic regime for complex hybrid blends. Correlations are established between blend morphology and rheological behavior. Among the different linear rheological approaches, i.e., elastic modulus, complex viscosity, yield stress, Cole–Cole plots, Han plots, and Mavridish–Shroff or Booij–Palmen plots, the latter is the most sensitive allowing extraction of a relaxation time from the plot. The results correlate reasonably well with the different morphologies of the blends. Both, linear and nonlinear methods lead to compatible results, distinguishing among blends with droplet-matrix, partially continuous dispersed phase and fully cocontinuous morphologies. Moreover, for the first time, the analysis of the nonlinear parameter, Q0, allows a qualitative comparison of the interfacial areas of blends with a dispersed phase-matrix morphology at different continuity levels and those with cocontinuous morphology.

1.
Gandini
,
A.
, “
Polymers from renewable resources: A challenge for the future of macromolecular materials
,”
Macromolecules
41
,
9491
9504
(
2008
).
2.
Zhu
,
Y.
,
C.
Romain
, and
C. K.
Williams
, “
Sustainable polymers from renewable resources
,”
Nature
540
,
354
362
(
2016
).
3.
Schneiderman
,
D. K.
, and
M. A.
Hillmyer
, “
50th anniversary perspective: There is a great future in sustainable polymers
,”
Macromolecules
50
,
3733
3749
(
2017
).
4.
Castro-Aguirre
,
E.
,
F.
Iñiguez-Franco
,
H.
Samsudin
,
X.
Fang
, and
R.
Auras
, “
Poly(lactic acid)—Mass production, processing, industrial applications, and end of life
,”
Adv. Drug Deliv. Rev.
107
,
333
366
(
2016
).
5.
Hamad
,
K.
,
M.
Kaseem
,
H. W.
Yang
,
F.
Deri
, and
Y. G.
Ko
, “
Properties and medical applications of polylactic acid: A review
,”
eXPRESS Polym. Lett.
9
,
435
455
(
2015
).
6.
Dil
,
J. E.
,
J. P.
Carreau
, and
B. D.
Favis
, “
Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends
,”
Polymer
68
,
202
212
(
2015
).
7.
Zolali
,
A. M.
,
V.
Heshmati
, and
B. D.
Favis
, “
Ultratough co-continuous PLA/PA11 by interfacially percolated poly(ether-b-amide)
,”
Macromolecules
50
,
264
274
(
2017
).
8.
Heshmati
,
V.
,
A. M.
Zolali
, and
B. D.
Favis
, “
Morphology development in poly(lactic acid)/polyamide 11 biobased blends: Chain mobility and interfacial interactions
,”
Polymer
120
,
197
208
(
2017
).
9.
Heshmati
,
V.
, and
B. D.
Favis
, “
High performance poly(lactic acid)/bio-polyamide 11 through controlled chain mobility
,”
Polymer
123
,
184
193
(
2017
).
10.
Han
,
C. D.
,
Rheology in Polymer Processing
(
Academic
,
New York
,
1976
).
11.
Utracki
,
L. A.
,
Polymer Alloys and Blends: Thermodynamics and Rheology
(
Hanser
,
New York
,
1989
).
12.
Utracki
,
L. A.
, and
C. A.
Wilkie
,
Polymer Blends Handbook
(
Springer
,
Dordrecht
,
2014
).
13.
Codou
,
A.
,
A.
Anstey
,
M.
Misra
, and
A.
Mohanty
, “
Novel compatibilized nylon-based ternary blends with polypropylene and poly(lactic acid): Morphology evolution and rheological behavior
,”
RSC Adv.
8
,
15709
15724
(
2018
).
14.
Mazidi
,
M. M.
, and
M. K. R.
Aghjeh
, “
Effects of blend composition and compatibilization on the melt rheology and phase morphology of binary and ternary PP/PA6/EPDM blends
,”
Polym. Bull.
72
,
1975
2000
(
2015
).
15.
Mazidi
,
M. M.
,
A.
Edalat
,
R.
Berahman
, and
F. S.
Hosseini
, “
Highly toughened polylactide (PLA) based ternary blends with significantly enhanced glass transition and melt strength: Tailoring the interfacial interactions, phase morphology, and performance
,”
Macromolecules
51
,
4298
4314
(
2018
).
16.
Nijenhuis
,
A. J.
,
E.
Colstee
,
D. W.
Grijpma
, and
A. J.
Pennings
, “
High molecular weight poly(L-lactide) and poly(ethylene oxide) blends thermal characterization and physical properties
,”
Polymer
37
,
5849
5857
(
1996
).
17.
Nakafuku
,
C.
, and
M.
Sakoda
, “
Melting and crystallization of poly(L-lactic acid) and poly(ethylene oxide) binary mixture
,”
Polym. J.
25
,
909
917
(
1993
).
18.
Favis
,
B. D.
, and
P. J.
Chalifoux
, “
The effect of viscosity ratio on the morphology of polypropylene/polycarbonate blends during processing
,”
Polym. Eng. Sci.
27
,
1591
1600
(
1987
).
19.
Yuan
,
Z.
, and
B. D.
Favis
, “
Coarsening of immiscible co-continuous blends during quiescent annealing
,”
AIChE J.
51
,
271
280
(
2005
).
20.
Filippone
,
G.
,
S. C.
Carrocio
,
R.
Mendichi
,
L.
Gioiella
,
N. T.
Dintcheva
, and
C.
Gambarotti
, “
Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state—Part I: Thermal and thermo-oxidative degradation of polyamide 11
,”
Polymer
72
,
134
141
(
2015
).
21.
Acierno
,
S.
, and
P.
Van Puyvelde
, “
Rheological behavior of polyamide 11 with varying initial moisture content
,”
J. Appl. Polym. Sci.
97
,
666
670
(
2005
).
22.
Yang
,
I.
, and
P. H.
Tsai
, “
Rheological characterization and microphase separated structure of a poly(ether-block-amide) segmented block copolymer
,”
J. Polym. Sci. B
43
,
2557
2567
(
2005
).
23.
Graebling
,
D.
,
R.
Muller
, and
J. F.
Palierne
, “
Linear viscoleastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids
,”
Macromolecules
26
,
320
329
(
1993
).
24.
Sangroniz
,
A.
,
L.
Sangroniz
,
M.
Fernández
,
A.
Santamaria
,
M.
Iriarte
, and
A.
Etxeberria
, “
Blends of biodegradable poly(butylene adipate-co-terephthalate) with poly(hydroxi amino ether) for packaging applications: Miscibility, rheology and transport properties
,”
Eur. Polym. J.
105
,
348
358
(
2018
).
25.
Sangroniz
,
A.
,
L.
Sangroniz
,
A.
Gonzalez
,
A.
Santamaria
,
J.
del Rio
,
M.
Iriarte
, and
A.
Etxeberria
, “
Improving the barrier properties of a biodegradable polyester for packaging applications
,”
Eur. Polym. J.
115
,
76
85
(
2019
).
26.
Li
,
R.
,
W.
Yu
, and
C.
Zhou
, “
Rheological characterization of droplet-matrix versus cocontinuous morphology
,”
J. Macromol. Sci. B
45
,
889
898
(
2006
).
27.
López-Barrón
,
C. R.
, and
C. W.
Macosko
, “
Rheology of compatibilized immiscible blends with droplet-matrix and cocontinuos morphologies during coarsening
,”
J. Rheol.
58
,
1935
1953
(
2014
).
28.
Wu
,
S.
, “
Predicting chain conformation and entanglement of polymers from chemical structure
,”
Polym. Eng. Sci.
32
,
823
830
(
1992
).
29.
Dorgan
,
J. R.
,
J.
Janzen
,
M. P.
Clayton
,
S. B.
Hait
, and
D. M.
Knauss
, “
Melt rheology of variable L-content poly(lactic acid)
,”
J. Rheol.
49
,
607
619
(
2005
).
30.
Al-Itry
,
R.
,
K.
Lamnawar
, and
A.
Maazouz
, “
Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their by reactive extrusion with functionalize epoxy
,”
Polym. Degrad. Stab.
97
,
1898
1914
(
2012
).
31.
Van Puyvelde
,
P. V.
, and
P.
Moldenaers
, “
Rheology and morphology development
,” in
Immiscible Polymer Blends
(The British Society of Rheology, Aberystwyth,
2005
).
32.
Galloway
,
J. A.
, and
C. W.
Macosko
, “
Comparison of methods for the detection of cocontinuity in poly(ethylene oxide)/polystyrene blends
,”
Polym. Eng. Sci.
44
,
714
727
(
2004
).
33.
Castro
,
M.
,
C.
Carrot
, and
F.
Prochazka
, “
Experimental and theoretical description of low frequency viscoelastic behaviour in immiscible polymer blends
,”
Polymer
45
,
4095
4104
(
2004
).
34.
Durmus
,
A.
,
A.
Kasgoz
, and
C. W.
Macosko
, “
Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology
,”
Polymer
48
(
2
),
4492
4502
(
2007
).
35.
Naeim Abadi
,
A.
,
F.
Hemmati
, and
H.
Garmabi
, “
Validation of rheological responses for morphological evaluation of incompatible polyamide 12/thermoplastic elastomer blends filled with nanoclay
,”
Polym. Test.
65
,
78
89
(
2018
).
36.
Vinogradov
,
G. V.
, and
A. Y.
Malkin
,
Rheology of Polymers
(
Springer
,
Berlin
,
1980
).
37.
Barnes
,
H. A.
, and
K.
Walters
, “
The yield stress myth?
,”
Rheol. Acta
24
,
323
326
(
1985
).
38.
Hartnett
,
J. P.
, and
R. Y. Z.
Hu
, “
Technical note: The yield stress—An engineering reality
,”
J. Rheol.
33
,
671
679
(
1989
).
39.
Mavridis
,
H.
, and
R. N.
Shroff
, “
Temperature dependence of polyolefin melt rheology
,”
Polym. Eng. Sci.
32
,
1778
1791
(
1992
).
40.
Booij
,
H. C.
, and
J. H. M.
Palmen
, “
Some aspects of linear and nonlinear viscoelastic behavior of polymer melts in shear
,”
Rheol. Acta
21
,
376
387
(
1982
).
41.
Booij
,
H. C.
, and
J. H. M.
Palmen
, “
Linear viscoelastic properties of a miscible polymer blend system
,” in
Theoretical and Applied Rheology: Proceedings of the XIth International Congress on Rheology
, edited by
P.
Moldenaers
and
R.
Keunings
(
Elsevier
,
Brussels
,
1992
), pp.
321
323
.
42.
Pötschke
,
P.
,
M.
Abdel-Goad
,
I.
Alig
,
S.
Dudkin
, and
D.
Lellinger
, “
Rheological and dielectrical characterization of melt-mixed polycarbonate-multiwalled carbon nanotube composites
,”
Polymer
45
,
8863
8870
(
2004
).
43.
Han
,
C. D.
, “
Correlations of the first normal stress difference with shear stress and of the storage modulus with loss modulus for homopolymers
,”
J Appl. Pol. Sci.
32
,
3809
3840
(
1986
).
44.
Han
,
C. D.
, and
J. K.
Kim
, “
On the use of time-temperature superposition in multicomponent/multiphase polymer systems
,”
Polymer
34
,
2533
2539
(
1993
).
45.
Lee
,
H. M.
, and
O. O.
Park
, “
Rheology and dynamics of immiscible polymer blends
,”
J. Rheol.
35
,
1405
1425
(
1994
).
46.
Salehiyan
,
R.
,
Y.
Yoo
,
W. J.
Choi
, and
K.
Hyun
, “
Characterization of morphologies of compatibilized polypropylene/polystyrene blends with nanoparticles via nonlinear rheological properties from FT-rheology
,”
Macromolecules
47
,
4066
4076
(
2014
).
47.
Salehiyan
,
R.
,
W. J.
Choi
,
J. H.
Lee
, and
K.
Hyun
, “
Effects of mixing protocol and mixing time on viscoelasticity of compatibilized PP/PS blends
,”
Korea-Aust. Rheol. J.
26
,
311
318
(
2014
).
48.
Salehiyan
,
R.
,
H. Y.
Song
,
W. J.
Choi
, and
K.
Hyun
, “
Characterization of effects of silica nanoparticles on (80/20) PP/PS blends via nonlinear rheological properties from Fourier transform rheology
,”
Macromolecules
48
,
4669
4679
(
2015
).
49.
Sangroniz
,
L.
,
M. A.
Moncerrate
,
V. A.
De Amicis
,
J. K.
Palacios
,
M.
Fernández
,
A.
Santamaria
,
J. J.
Sánchez
,
F.
Laoutid
,
P.
Dubois
, and
A. J.
Müller
, “
The outstanding ability of nanosilica to stabilize dispersions of Nylon 6 droplets in a polypropylene matrix
,”
J. Polym. Sci. B
53
,
1567
1579
(
2015
).
50.
Sangroniz
,
L.
,
J. K.
Palacios
,
M.
Fernández
,
J. I.
Eguiazabal
,
A.
Santamaria
, and
A. J.
Müller
, “
Linear and non-linear rheological behavior of polypropylene/polyamide blends modified with a compatibilizer agent and nanosilica and its relationship with the morphology
,”
Eur. Polym. J.
83
,
10
21
(
2016
).
51.
Salehiyan
,
R.
,
H. Y.
Song
, and
K.
Hyun
, “
Nonlinear behavior of PP/PS blends with and without clay under large amplitude oscillatory shear (LAOS) flow
,”
Korea-Aust. Rheol. J.
27
,
95
103
(
2015
).
52.
Wilhelm
,
M.
, “
Fourier-transform rheology
,”
Macromol. Mater. Eng.
287
,
83
105
(
2002
).
53.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klei
,
K. S.
Cho
,
J. G.
Nam
,
J.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
54.
Hyun
,
K.
, and
M.
Wilhelm
, “
Establishing a new mechanical nonlinear coefficient Q from FT-rheology: First investigation of entangled linear and comb polymer model system
,”
Macromolecules
42
,
411
422
(
2009
).
55.
Cziep
,
M. A.
,
M.
Abbasi
,
M.
Heck
,
L.
Arens
, and
M.
Wilhelm
, “
Effect of molecular weight, polydispersity, and monomer of linear homopolymer melts on the intrinsic mechanical nonlinearity 3Q0(w) in MAOS
,”
Macromolecules
49
,
3566
3579
(
2016
).
56.
See supplementary material at https://doi.org/10.1122/8.0000202 for Figures S1, S2, and S4: SAOS results of PLA/PA, PLA(PEO)/PA, and 45% PLA(PEO) and 50% PLA(PEO) blends; Figure S3: fitting of viscosity to Briedis–Faitelson model; Figures S5 and S6: Cole–Cole plots of all the systems studied in this work; Figures S7–S9: Han plots of all the systems studied in this work; Figure S10: LAOS results of PLA/PA, PLA(PEO)/PA, and 45% PLA(PEO) and 50% PLA(PEO) blends.

Supplementary Material

You do not currently have access to this content.