Following a previous work investigating the flow-induced crystallization (FIC) of polybutylene terephthalate/polytetrahydrofuran (PBT/PTHF) multiblock copolymers under steady shear, we propose here to deal with the case of large amplitude oscillatory shear (LAOS). For this purpose, we focus on a single copolymer (Mw¯=50kgmol1) made, in average, of a sequence of nine soft and eight hard segments. We show unambiguously that LAOS accelerates the polymer crystallization when increasing (i) the frequency from 0.5 up to 50 rad s−1 (at a constant strain amplitude of 100%) or (ii) the strain amplitude from 10 to 300% (at a constant frequency of 2.5 rad s−1). Based on this data, we demonstrate that high oscillatory shear rates have similar effects as the steady shear rate regarding the gelation time, i.e., that frequency- and strain amplitude-related effects are secondary. We carefully analyze the stress response through Fourier-transform decomposition that emphasizes the rich rheological behavior of our material during its liquid-to-solid phase transition. With the help of x-ray scattering experiments (ex situ SAXS and WAXS), we then propose a global scenario rationalizing the whole set of rheological observations based on the copolymer structure. In parallel, we propose to use a recent model that we developed to simulate the stress response in the case of steady shear-promoted FIC and adapt it to the case of LAOS. Remarkably, our model, which is based on modified Doi–Edwards equations only, provides good qualitative agreement with the data when varying the strain amplitude or the frequency. Furthermore, it is found to predict quantitatively the gelation time of the system.

1.
Drobny
,
J. G.
,
Handbook of Thermoplastic Elastomers
(
Elsevier
,
Amsterdam
,
2014
).
2.
He
,
W.-N.
, and
J.-T.
Xu
, “
Crystallization assisted self-assembly of semicrystalline block copolymers
,”
Prog. Polym. Sci.
37
,
1350
1400
(
2012
).
3.
McLean
,
R. S.
, and
B. B.
Sauer
, “
Nano-deformation of crystalline domains during tensile stretching studied by atomic force microscopy
,”
J. Polym. Sci. B Polym. Phys.
37
,
859
866
(
1999
).
4.
Sauer
,
B. B.
,
R. S.
McLean
,
D. J.
Brill
, and
D. J.
Londono
, “
Morphology and orientation during the deformation of segmented elastomers studied with small-angle X-ray scattering and atomic force microscopy
,”
J. Polym. Sci. B Polym Phys.
40
,
1727
1740
(
2002
).
5.
Biemond
,
G. J. E.
,
J.
Feijen
, and
R. J.
Gaymans
, “
Poly(ether amide) segmented block copolymers with adipic acid based tetraamide segments
,”
J. Appl. Polym. Sci.
105
,
951
963
(
2007
).
6.
Kong
,
X.
,
S.
Tan
,
X.
Yang
,
G.
Li
,
E.
Zhou
, and
D.
Ma
, “
Isothermal crystallization kinetics of PEO in poly (ethylene terephthalate)–poly (ethylene oxide) segmented copolymers. I. Effect of the soft-block length
,”
J. Polym. Sci. B Polym Phys.
38
,
3230
3238
(
2000
).
7.
Hotta
,
A.
,
E.
Cochran
,
J.
Ruokolainen
,
V.
Khanna
,
G. H.
Fredrickson
,
E. J.
Kramer
,
Y.-W.
Shin
,
F.
Shimizu
,
A. E.
Cherian
,
P. D.
Hustad
,
J. M.
Rose
, and
G. W.
Coates
, “
Semicrystalline thermoplastic elastomeric polyolefins: Advances through catalyst development and macromolecular design
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
15327
15332
(
2006
).
8.
Vatankhah-Varnosfaderani
,
M.
,
A. N.
Keith
,
Y.
Cong
,
H.
Liang
,
M.
Rosenthal
,
M.
Sztucki
,
C.
Clair
,
S.
Magonov
,
D. A.
Ivanov
,
A. V.
Dobrynin
, and
S. S.
Sheiko
, “
Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration
,”
Science
359
,
1509
1513
(
2018
).
9.
Gaymans
,
R. J.
, and
J. L.
de Haan
, “
Segmented copolymers with poly (ester amide) units of uniform length: Synthesis
,”
Polymer
34
,
4360
4364
(
1993
).
10.
Sharma
,
A.
,
G. P.
Baeza
,
L.
Imperiali
,
W. P.
Appel
,
C.
Fitié
,
G. V.
Poel
, and
E.
van Ruymbeke
, “
Fast scanning calorimetry clarifies the understanding of the complex melting and crystallization behavior of polyesteramide multi-block copolymers
,”
Polym. Int.
68
,
283
293
(
2018
).
11.
Biemond
,
G. J. E.
,
J.
Feijen
, and
R. J.
Gaymans
, “
Influence of polydispersity of crystallizable segments on the properties of segmented block copolymers
,”
Polym. Eng. Sci.
48
,
1389
1400
(
2008
).
12.
Nébouy
,
M.
,
A.
de Almeida
,
L.
Chazeau
, and
G. P.
Baeza
, “
Modeling shear-induced crystallization in startup flow: The case of segmented copolymers
,”
J. Rheol.
63
,
837
850
(
2019
).
13.
Langela
,
M.
,
U.
Wiesner
,
H. W.
Spiess
, and
M.
Wilhelm
, “
Microphase reorientation in block copolymer melts as detected via FT rheology and 2D SAXS
,”
Macromolecules
35
,
3198
3204
(
2002
).
14.
Oelschlaeger
,
C.
,
J. S.
Gutmann
,
M.
Wolkenhauer
,
H.-W.
Spiess
,
K.
Knoll
, and
M.
Wilhelm
, “
Kinetics of shear microphase orientation and reorientation in lamellar diblock and triblock copolymer melts as detected via FT-rheology and 2D-SAXS
,”
Macromol. Chem. Phys.
208
,
1719
1729
(
2007
).
15.
Malek
,
A.
,
N.
Dingenouts
,
T. F.
Beskers
,
U.
Fehrenbacher
,
L.
Barner
, and
M.
Wilhelm
, “
Linear and nonlinear rheological behavior and crystallization of semicrystalline poly (styrene)–poly (l-lactide) block copolymers
,”
Eur. Polym. J.
49
,
2704
2720
(
2013
).
16.
Rendon
,
S.
,
W. R.
Burghardt
,
M. L.
Auad
, and
J. A.
Kornfield
, “
Shear-induced alignment of smectic side group liquid crystalline polymers
,”
Macromolecules
40
,
6624
6630
(
2007
).
17.
Hyun
,
K.
,
J. G.
Nam
,
M.
Wilhelm
,
K. H.
Ahn
, and
S. J.
Lee
, “
Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow
,”
Korea-Aust. Rheol. J.
15
,
97
105
(
2003
).
18.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
19.
Wilhelm
,
M.
, “
Fourier transform rheology
,”
Macromol. Mater. Eng.
287
,
83
105
(
2002
).
20.
Cho
,
K. S.
,
K.
Hyun
,
K. H.
Ahn
, and
S. J.
Lee
, “
A geometrical interpretation of large amplitude oscillatory shear response
,”
J. Rheol.
49
,
747
758
(
2005
).
21.
Ewoldt
,
R. H.
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
1458
(
2008
).
22.
Rogers
,
S.
, “
Large amplitude oscillatory shear: Simple to describe, hard to interpret
,”
Phys. Today
71
(7),
34
40
(
2018
).
23.
Nébouy
,
M.
,
A.
de Almeida
,
S.
Brottet
, and
G. P.
Baeza
, “
Process-oriented structure tuning of PBT/PTHF thermoplastic elastomers
,”
Macromolecules
51
,
6291
6302
(
2018
).
24.
de Almeida
,
A.
,
M.
Nébouy
, and
G. P.
Baeza
, “
Bimodal crystallization kinetics of PBT/PTHF segmented block copolymers: Impact of the chain rigidity
,”
Macromolecules
52
,
1227
1240
(
2019
).
25.
Costanzo
,
S.
,
G.
Ianniruberto
,
G.
Marrucci
, and
D.
Vlassopoulos
, “
Measuring and assessing first and second normal stress differences of polymeric fluids with a modular cone-partitioned plate geometry
,”
Rheol. Acta
57
,
363
376
(
2018
).
26.
Nébouy
,
M.
,
A.
Louhichi
, and
G. P.
Baeza
, “
Volume fraction and width of ribbon-like crystallites control the rubbery modulus of segmented block copolymers
,”
J. Polym. Eng.
40
,
715
726
(
2019
).
27.
Eder
,
G.
, and
H.
Janeschitz-Kriegl
, “
Theory of shear-induced crystallization of polymer melts
,”
Coll. Polym. Sci.
266
,
1087
1094
(
1988
).
28.
Kornfield
,
J. A.
,
G.
Kumaraswamy
, and
A. M.
Issaian
, “
Recent advances in understanding flow effects on polymer crystallization
,”
Ind. Eng. Chem. Res.
41
,
6383
6392
(
2002
).
29.
Seki
,
M.
,
D. W.
Thurman
,
J. P.
Oberhauser
, and
J. A.
Kornfield
, “
Shear-mediated crystallization of isotactic polypropylene: The role of long chain-long chain overlap
,”
Macromolecules
35
,
2583
2594
(
2002
).
30.
Elmoumni
,
A.
,
H. H.
Winter
,
A. J.
Waddon
, and
H.
Fruitwala
, “
Correlation of material and processing time scales with structure development in isotactic polypropylene crystallization
,”
Macromolecules
36
,
6453
6461
(
2003
).
31.
Bustos
,
F.
,
P.
Cassagnau
, and
R.
Fulchiron
, “
Effect of molecular architecture on quiescent and shear-induced crystallization of polyethylene
,”
J. Polym. Sci. Polym. Phys.
44
,
1597
1607
(
2006
).
32.
Baeza
,
G. P.
, “
The reinforcement effect in well-defined segmented copolymers: Counting the topological constraints at the mesoscopic scale
,”
Macromolecules
51
,
1957
1966
(
2018
).
33.
Marrucci
,
G.
, “
Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule
,”
J. Non-Newtonian Fluid Mech.
62
,
279
289
(
1996
).
34.
Likhtman
,
A. E.
, and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–poly equation
,”
J. Non-Newtonian Fluid Mech.
114
,
1
12
(
2003
).
35.
Graham
,
R. S.
,
A. E.
Likhtman
, and
T. C. B.
McLeish
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
1200
(
2003
).
36.
See supplementary material at https://doi.org/10.1122/8.0000191 for stress–strain and stress–rate Bowditch–Lissajous plots corresponding to the whole set of measurements (1). Full SAXS diffractograms performed on samples A, B, C, D, E, and F (2). Corresponding WAXS diffractograms and 2D data (3).

Supplementary Material

You do not currently have access to this content.