The criterion for brittle fracture of entangled polymer liquids [Wagner et al., J. Rheol. 62, 221–223 (2018)] is extended by including the effects of finite chain extensibility and polymer concentration. Crack initiation follows from rupture of primary C–C bonds, when the strain energy of entanglement segments reaches the energy of the covalent bond. Thermal fluctuations will concentrate the strain energy on one C–C bond of entanglement segments, leading to bond scission and rupture of polymer chains followed by crack initiation and fast crack growth. In start-up flows, entanglement segments characterized by long relaxation times, i.e., predominantly those in the middle of the polymer chain, will be the first to reach the critical strain energy and will fracture. Recent experimental data of Huang [Phys. Fluids 31, 083105 (2019)] of fracture of a monodisperse polystyrene melt and of several solutions of monodisperse polystyrenes dissolved in oligomeric styrene are in agreement with the scaling relations for critical Weissenberg number as well as Hencky strain and stress at fracture derived from this fracture criterion and the extended interchain pressure model [Narimissa, Huang, and Wagner, J. Rheol. 64, 95–110 (2020)].

1.
Wagner
,
M. H.
,
E.
Narimissa
, and
Q.
Huang
, “
On the origin of brittle fracture of entangled polymer solutions and melts
,”
J. Rheol.
62
,
221
223
(
2018
).
2.
Huang
,
Q.
,
M.
Mangnus
,
N. J.
Alvarez
,
R.
Koopmans
, and
O.
Hassager
, “
A new look at extensional rheology of low-density polyethylene
,”
Rheol. Acta
55
,
343
350
(
2016
).
3.
Huang
,
Q.
,
N. J.
Alvarez
,
A.
Shabbir
, and
O.
Hassager
, “
Multiple cracks propagate simultaneously in polymer liquids in tension
,”
Phys. Rev. Lett.
117
,
087801
(
2016
).
4.
Huang
,
Q.
, and
O.
Hassager
, “
Polymer liquids fracture like solids
,”
Soft Matter
13
,
3470
3474
(
2017
).
5.
Malkin
,
A. Y.
, and
C.
Petrie
, “
Some conditions for rupture of polymer liquids in extension
,”
J. Rheol.
41
,
1
25
(
1997
).
6.
Griffith
,
A. A.
, “
The phenomena of rupture and flow in solids
,”
Philos. Trans. R. Soc. London Ser. A
221
,
163
198
(
1921
).
7.
Sakaguchi
,
M.
, and
J.
Sohma
, “
ESR evidence for main-chain scission produced by mechanical fracture of polymers at low temperature
,”
J. Polym. Sci.
13
,
1233
1245
(
1975
).
8.
Fordyce
,
P.
,
K. L.
Defries
, and
B. M.
Franconi
, “
Chain scission and mechanical degradation of polystyrene
,”
Polym. Eng. Sci.
6
,
421
427
(
1984
).
9.
Mikos
,
A. G.
, and
N. A.
Peppas
, “
Polymer chain entanglements and brittle fracture
,”
J. Chern. Phys.
88
,
1337
1342
(
1988
).
10.
Zhurkov
,
S. N.
, and
V. E.
Korsukov
, “
Atomic mechanism of fracture of solid polymers
,”
J. Polym. Sci.
12
,
385
398
(
1974
).
11.
Tabata
,
M.
,
Y.
Hosokawa
,
O.
Watanabe
, and
J.
Sohma
, “
Direct evidence for main chain scissions of polymers in solution caused by high speed stirring
,”
Polym. J.
18
,
699
712
(
1986
).
12.
Rehner
,
J.
, “
Birefringence of polyisobutylene in solution and the Frenkel theory of macromolecular rupture
,”
J. Chem. Phys.
13
,
450
450
(
1945
).
13.
Bestul
,
A. B.
, “
Kinetics of capillary shear degradation in concentrated polymer solutions
,”
J. Chem. Phys.
24
,
1196
1201
(
1956
).
14.
Bestul
,
A. B.
, “
Energy requirements of mechanical shear degradation in concentrated polymer solutions
,”
J. Chem. Phys.
32
,
350
356
(
1960
).
15.
Ballauf
,
M.
, and
B. A.
Wolf
, “
Degradation of chain molecules. 2. Thermodynamically induced shear degradation of dissolved polystyrene
,”
Macromolecules
17
,
209
216
(
1984
).
16.
González-González
,
V. A.
,
G.
Neira-Velázquez
, and
J. L.
Angulo-Sánchez
, “
Polypropylene chain scissions and molecular weight changes in multiple extrusion
,”
Polym. Degrad. Stab.
60
,
33
42
(
1998
).
17.
Canevarolo
,
S. V.
, “
Chain scission distribution function for polypropylene degradation during multiple extrusions
,”
Polym. Degrad. Stab.
70
,
71
76
(
2000
).
18.
Cáceres
,
C. A.
, and
S. V.
Canevarolo
, “
Calculating the chain scission distribution function (CSDF) using the concentration method
,”
Polym. Degrad. Stab.
86
,
437
444
(
2004
).
19.
da Costa
,
H. M.
,
V. D.
Ramos
, and
M. C. G.
Rocha
, “
Rheological properties of polypropylene during multiple extrusion
,”
Polym. Test.
24
,
86
93
(
2005
).
20.
Bueche
,
F.
, “
Mechanical degradation of high polymer
,”
J. Appl. Polym.
4
,
101
105
(
1960
).
21.
Wang
,
Y.
, and
S.-Q.
Wang
, “
Salient features in uniaxial extension of polymer melts and solutions: Progressive loss of entanglements, yielding, non-Gaussian stretching, and rupture
,”
Macromolecules
44
,
5427
5435
(
2011
).
22.
Huang
,
Q.
, “
Exploring the mechanism of fracture for entangled polymer liquids in extensional flow
,”
Phys. Fluids
31
,
083105
(
2019
).
23.
Baumgaertel
,
M.
,
A.
Schausberger
, and
H. H.
Winter
, “
The relaxation of polymers with linear flexible chains of uniform length
,”
Rheol. Acta
29
,
400
408
(
1990
).
24.
Huang
,
Q.
,
O.
Mednova
,
H. K.
Rasmussen
,
N. J.
Alvarez
,
A. L.
Skov
,
K.
Almdal
, and
O.
Hassager
, “
Concentrated polymer solutions are different from melts: Role of entanglement molecular weight
,”
Macromolecules
46
,
5026
5035
(
2013
).
25.
Huang
,
Q.
,
N. J.
Alvarez
,
Y.
Matsumiya
,
H. K.
Rasmussen
,
H.
Watanabe
, and
O.
Hassager
, “
Extensional rheology of entangled polystyrene solutions suggests importance of nematic interactions
,”
ACS Macro Lett.
2
,
741
744
(
2013
).
26.
Winter
,
H. H.
, and
M.
Mours
, “
The cyber infrastructure initiative for rheology
,”
Rheol. Acta
45
,
331
338
(
2006
).
27.
Dealy
,
J. M.
,
D. J.
Read
, and
R. G.
Larson
,
Structure and Rheology of Molten Polymers From Structure to Flow Behavior and Back Again
(
Carl Hanser Verlag GmbH Co KG
, München, Germany,
2018
).
28.
Osaki
,
K.
,
K.
Nishizawa
, and
M.
Kurata
, “
Material time constant characterizing the nonlinear viscoelasticity of entangled polymeric systems
,”
Macromolecules
15
,
1068
1071
(
1982
).
29.
Takahashi
,
M.
,
T.
Isaki
,
T.
Takigawa
, and
T.
Masuda
, “
Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates
,”
J. Rheol.
37
,
827
846
(
1993
).
30.
Isaki
,
T.
,
M.
Takahashi
, and
O.
Urakawa
, “
Biaxial damping function of entangled monodisperse polystyrene melts: Comparison with the Mead-Larson-Doi model
,”
J. Rheol.
47
,
1201
1210
(
2003
).
31.
Menezes
,
E.
, and
W.
Graessley
, “
Nonlinear rheological behavior of polymer systems for several shear-flow histories
,”
J. Poly. Sci. Part B
20
,
1817
1833
(
1982
).
32.
Wagner
,
M. H.
and
V. H.
Rolon-Garrido
, “
Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time
,”
Korea-Australia Rheol. J.
21
,
203
211
(
2009
), available at https://www.koreascience.or.kr/article/JAKO200911764889939.page.
33.
Narimissa
,
E.
,
Q.
Huang
, and
M. H.
Wagner
, “
Elongational rheology of polystyrene melts and solutions: Concentration dependence of the interchain tube pressure effect
,”
J. Rheol.
64
,
95
110
(
2020
).
34.
Narimissa
,
E.
,
T.
Schweizer
, and
M. H.
Wagner
, “
A constitutive analysis of nonlinear shear flow
,”
Rheol. Acta
59
,
487
506
(
2020
).
35.
Wagner
,
M. H.
, “
The nonlinear strain measure of polyisobutylene melt in general biaxial flow and its comparison to the Doi-Edwards model
,”
Rheol. Acta
29
,
594
603
(
1990
).
36.
Wagner
,
M. H.
, and
J.
Schaeffer
, “
Nonlinear measures for general biaxial extension of polymer melts
,”
J. Rheol.
36
,
1
26
(
1992
).
37.
Wagner
,
M. H.
,
P.
Rubio
, and
H.
Bastian
, “
The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release
,”
J. Rheol.
45
,
1387
1412
(
2001
).
38.
Wagner
,
M. H.
,
M.
Yamaguchi
, and
M.
Takahashi
, “
Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model
,”
J. Rheol.
47
,
779
793
(
2003
).
39.
Wagner
,
M. H.
,
S.
Kheirandish
, and
O.
Hassager
, “
Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts
,”
J. Rheol.
49
,
1317
1327
(
2005
).
40.
Rolon-Garrido
,
V. H.
,
M. H.
Wagner
,
C.
Luap
, and
T.
Schweizer
, “
Modeling non-Gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts
,”
J. Rheol.
50
,
327
340
(
2006
).
41.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. part 3. The constitutive equation
,”
J. Chem. Soc. Faraday Trans.
74
,
1818
1832
(
1978
).
42.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. Part 4. Rheological properties
,”
J. Chem. Soc. Faraday Trans.
75
,
38
54
(
1979
).
43.
Bird
,
R. B.
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids. Kinetic Theory
(
Wiley & Sons
,
New York
,
1987
), Vol. 2.
44.
Larson
,
R. G.
,
Constitutive Equations for Polymer Melts
(
Butterworths
,
Stoneham
,
1988
).
45.
Cohen
,
A.
, “
A Padé approximant to the inverse Langevin function
,”
Rheol. Acta
30
,
270
273
(
1991
).
46.
Ye
,
X.
, and
T.
Sridhar
, “
Effects of the polydispersity on rheological properties of entangled polystyrene solutions
,”
Macromolecules
38
,
3442
3449
(
2005
).
47.
Howard
,
R. M.
, “
Analytical approximations for the inverse Langevin function via linearization, error approximation, and iteration
,”
Rheol. Acta
59
,
521
544
(
2020
).
48.
Marrucci
,
G.
, and
J. J.
Hermans
, “
Nonlinear viscoelasticity of concentrated polymeric liquids
,”
Macromolecules
13
,
380
387
(
1980
).
49.
De Gennes
,
P.
, “
Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients
,”
J. Chem. Phys.
60
,
5030
5042
(
1974
).
50.
Marrucci
,
G.
,
Molecular modelling of flows of concentrated polymers
, in
Transport Phenomena in Polymeric Systems
(
Wiley
,
New York
,
1989
).
51.
Lake
,
G. J.
, and
A. G.
Thomas
, “
The strength of highly elastic materials
,”
Proc. R. Soc. London A
300
,
108
119
(
1967
).
52.
Bhowmick
,
A.
,
A.
Gent
, and
C.
Pulford
, “
Tear strength of elastomers under threshold conditions
,”
Rubber Chem. Tech.
56
,
226
232
(
1983
).
53.
Grandbois
,
M.
,
M.
Beyer
,
M.
Rief
,
H.
Clausen-Schaumann
, and
H. E.
Gaub
, “
How strong is a covalent bond?
,”
Science
283
,
1727
1730
(
1999
).
54.
Ligoure
,
C.
, and
S.
Mora
, “
Fractures in complex fluids: The case of transient networks
,”
Rheol. Acta
52
,
91
114
(
2013
).
55.
Wang
,
S.
,
S.
Panyukov
,
M.
Rubinstein
, and
S. L.
Craig
, “
Quantitative adjustment to the molecular energy parameter in the Lake-Thomas theory of polymer fracture energy
,”
Macromolecules
52
,
2772
2777
(
2019
).
56.
Vernerey
,
F. J.
,
R.
Brighenti
,
R.
Long
, and
T.
Shen
, “
Statistical damage mechanics of polymer networks
,”
Macromolecules
51
,
6609
6622
(
2018
).
57.
Mazich
,
K. A.
, and
M.
Samus
, “
Role of entanglement couplings in threshold fracture of a rubber network
,”
Macromolecules
23
,
2478
2483
(
1990
).
58.
Wagner
,
M. H.
,
E.
Narimissa
, and
Q.
Huang
, “Response to ‘Letter to the Editor: “Melt rupture unleashed by few chain scission events in fully stretched strands”’” [J. Rheol. 63, 105 (2018)],”
J. Rheol.
63
,
419
421
(2019).
59.
Wagner
,
M. H.
, “
Scaling relations for elongational flow of polystyrene melts and concentrated solutions of polystyrene in oligomeric styrene
,”
Rheol. Acta
53
,
765
777
(
2014
).
60.
Chen
,
Y.
,
A. J. H.
Spiering
,
S.
Karthikeyan
,
G. W. M.
Peters
,
E. W.
Meijer
, and
R. P.
Sijbesma
, “
Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain
,”
Nat. Chem.
4
,
559
562
(
2012
).
61.
Jiang
,
S.
,
L.
Zhang
,
T.
Xie
,
Y.
Lin
,
H.
Zhang
,
Y.
Xu
,
W.
Weng
, and
L.
Dai
, “
Mechanoresponsive PS-PnBA-PS triblock copolymers via covalently embedding mechanophore
,”
ACS Macro Lett.
2
,
705
709
(
2013
).
62.
Chen
,
Y.
,
C. J.
Yeh
,
Y.
Qi
,
R.
Long
, and
C.
Creton
, “
From force responsive molecules to quantifying and mapping stresses in soft materials
,”
Sci. Adv.
6
,
eaaz5093
(
2020
).
63.
See supplementary material at https://doi.org/10.1122/8.0000184 for linear-viscoelastic mastercurves of G′ and G″ (Fig. S1) as well as parsimonious relaxation spectra (Table S1) for the polystyrene melt and solutions investigated.

Supplementary Material

You do not currently have access to this content.